Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (1): 1-8.DOI: 10.11772/j.issn.1001-9081.2021071221
Special Issue: 人工智能
• Artificial intelligence • Next Articles
Yang LI1, Anbiao WU1, Ye YUAN2(), Linlin ZHAO1, Guoren WANG2
Received:
2021-07-14
Revised:
2021-09-03
Accepted:
2021-09-15
Online:
2021-09-03
Published:
2022-01-10
Contact:
Ye YUAN
About author:
LI Yang, born in 1998, M. S. candidate. His research interests include graph neural network, graph representation learning.Supported by:
通讯作者:
袁野
作者简介:
李扬(1998—),男,黑龙江勃利人,硕士研究生,CCF会员,主要研究方向:图神经网络、图表示学习基金资助:
CLC Number:
Yang LI, Anbiao WU, Ye YUAN, Linlin ZHAO, Guoren WANG. Unsupervised attributed graph embedding model based on node similarity[J]. Journal of Computer Applications, 2022, 42(1): 1-8.
李扬, 吴安彪, 袁野, 赵琳琳, 王国仁. 基于节点相似度的无监督属性图嵌入模型[J]. 《计算机应用》唯一官方网站, 2022, 42(1): 1-8.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021071221
变量 | 定义 |
---|---|
属性图 | |
属性图的点集 | |
属性图的边集 | |
属性图的节点个数 | |
属性图的属性矩阵 | |
第 | |
第 | |
属性图嵌入 | |
第 | |
属性图的拓扑嵌入 | |
第 | |
属性图的相似度矩阵 | |
属性图的拓扑相似度矩阵 | |
属性图的属性相似度矩阵 | |
α | 超参数 |
d | 嵌入向量维数 |
m | 属性向量维数 |
Tab. 1 Main parameters
变量 | 定义 |
---|---|
属性图 | |
属性图的点集 | |
属性图的边集 | |
属性图的节点个数 | |
属性图的属性矩阵 | |
第 | |
第 | |
属性图嵌入 | |
第 | |
属性图的拓扑嵌入 | |
第 | |
属性图的相似度矩阵 | |
属性图的拓扑相似度矩阵 | |
属性图的属性相似度矩阵 | |
α | 超参数 |
d | 嵌入向量维数 |
m | 属性向量维数 |
数据集 | 节点数 | 边数 | 类别数 | 特征数 |
---|---|---|---|---|
Cora | 2 708 | 5 429 | 7 | 1 433 |
Citeseer | 3 327 | 4 732 | 6 | 3 703 |
Pubmed | 19 717 | 44 338 | 3 | 500 |
Tab. 2 Dataset statistical information
数据集 | 节点数 | 边数 | 类别数 | 特征数 |
---|---|---|---|---|
Cora | 2 708 | 5 429 | 7 | 1 433 |
Citeseer | 3 327 | 4 732 | 6 | 3 703 |
Pubmed | 19 717 | 44 338 | 3 | 500 |
方法 | Cora | Citeseer | Pubmed |
---|---|---|---|
Raw features | 47.9 | 49.4 | 69.1 |
DeepWalk | 67.2 | 43.2 | 65.3 |
LP | 68.0 | 45.3 | 63.0 |
DeepWalk+features | 70.7 | 51.4 | 74.3 |
VGAE | 72.4 | 55.7 | 71.6 |
GAE | 80.5 | 69.1 | 78.1 |
GraphSAGE-LSTM | 50.1 | 40.3 | 77.1 |
GraphSAGE-pool | 57.5 | 45.9 | 79.9 |
GraphSAGE-mean | 67.0 | 52.8 | 79.3 |
GraphSAGE-GCN | 74.3 | 54.5 | 77.5 |
本文方法 | 81.7 | 71.5 | 79.0 |
Tab. 3 Accuracy comparison of node classification task on different datasets
方法 | Cora | Citeseer | Pubmed |
---|---|---|---|
Raw features | 47.9 | 49.4 | 69.1 |
DeepWalk | 67.2 | 43.2 | 65.3 |
LP | 68.0 | 45.3 | 63.0 |
DeepWalk+features | 70.7 | 51.4 | 74.3 |
VGAE | 72.4 | 55.7 | 71.6 |
GAE | 80.5 | 69.1 | 78.1 |
GraphSAGE-LSTM | 50.1 | 40.3 | 77.1 |
GraphSAGE-pool | 57.5 | 45.9 | 79.9 |
GraphSAGE-mean | 67.0 | 52.8 | 79.3 |
GraphSAGE-GCN | 74.3 | 54.5 | 77.5 |
本文方法 | 81.7 | 71.5 | 79.0 |
1 | FREEMAN L C. Visualizing social networks[J]. Journal of Social Structure, 2000, 1: No.1. |
2 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22) [2021-06-01].. |
3 | BELKIN M, NIYOGI P. Laplacian eigenmaps and spectral techniques for embedding and clustering[C]// Proceedings of the 14th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2001: 585-591. 10.7551/mitpress/1120.003.0080 |
4 | HE X F, NIYOGI P. Locality preserving projections[C]// Proceedings of the 16th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2003: 153-160. |
5 | AHMED A, SHERVASHIDZE N, NARAYANAMURTHY S, et al. Distributed large-scale natural graph factorization[C]// Proceedings of the 22nd International Conference on World Wide Web. New York: ACM, 2013: 37-48. 10.1145/2488388.2488393 |
6 | CAO S S, LU W, XU Q K. GraRep: learning graph representations with global structural information[C]// Proceedings of the 24th ACM International Conference on Information and Knowledge Management. New York: ACM, 2015: 891-900. 10.1145/2806416.2806512 |
7 | OU M D, CUI P, PEI J, et al. Asymmetric transitivity preserving graph embedding[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1105-1114. 10.1145/2939672.2939751 |
8 | PEROZZI B, Al-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701-710. 10.1145/2623330.2623732 |
9 | GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 855-864. 10.1145/2939672.2939754 |
10 | PEROZZI B, KULKARNI V, CHEN H C, et al. Don’t walk, skip! online learning of multi-scale network embeddings[EB/OL]. (2017-06-24) [2021-06-01].. 10.1145/3110025.3110086 |
11 | CHAMBERLAIN B P, CLOUGH J R, DEISENROTH M P. Neural embeddings of graphs in hyperbolic space [EB/OL]. (2017-05-29) [2021-06-01].. |
12 | TIAN F, GAO B, CUI Q, et al. Learning deep representations for graph clustering[C]// Proceedings of the 28th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2014:1293-1299. |
13 | WANG D X, CUI P, ZHU W W. Structural deep network embedding[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1225-1234. 10.1145/2939672.2939753 |
14 | CAO S S, LU W, XU Q K. Deep neural networks for learning graph representations[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2016:1145-1152. |
15 | TANG J, QU M, WANG M Z, et al. LINE: large-scale information network embedding[C]// Proceedings of the 24th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2015: 1067-1077. 10.1145/2736277.2741093 |
16 | 祁志卫,王笳辉,岳昆,等. 图嵌入方法与应用:研究综述[J]. 电子学报, 2020, 48(4):808-818. 10.3969/j.issn.0372-2112.2020.04.023 |
QI Z W, WANG J H, YUE K, et al. Methods and applications of graph embedding: a survey[J]. Acta Electronica Sinica, 2020, 48(4):808-818. 10.3969/j.issn.0372-2112.2020.04.023 | |
17 | HUANG X, LI J D, HU X. Label informed attributed network embedding[C]// Proceedings of the 10th ACM International Conference on Web Search and Data Mining. New York: ACM, 2017: 731-739. 10.1145/3018661.3018667 |
18 | HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 1025-1035. 10.1145/3219819.3219890 |
19 | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. (2018-02-04) [2021-06-01].. |
20 | YANG C, LIU Z Y, ZHAO D L, et al. Network representation learning with rich text information[C]// Proceedings of the 24th International Joint Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2015: 2111-2117. |
21 | HUANG X, LI J D, HU X. Accelerated attributed network embedding[C]// Proceedings of the 2017 SIAM International Conference on Data Mining. Philadelphia, PA: SIAM, 2017: 633-641. 10.1137/1.9781611974973.71 |
22 | KIPF T N, WELLING M. Variational graph auto-encoders[EB/OL]. (2016-11-21) [2021-06-01].. |
23 | PAN S R, HU R Q, LONG G D, et al. Adversarially regularized graph autoencoder for graph embedding[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2018: 2609-2615. 10.24963/ijcai.2018/362 |
24 | WANG C, PAN S R, LONG G D, et al. MGAE: marginalized graph autoencoder for graph clustering[C]// Proceedings of the 2017 ACM Conference on Information and Knowledge Management. New York: ACM, 2017: 889-898. 10.1145/3132847.3132967 |
25 | GAO H C, HUANG H. Deep attributed network embedding[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2018:3364-3370. 10.24963/ijcai.2018/467 |
26 | MONTI F, BOSCAINI D, MASCI J, et al. Geometric deep learning on graphs and manifolds using mixture model CNNs[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5425-5434. 10.1109/cvpr.2017.576 |
27 | KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. (2017-01-30) [2021-06-01].. |
28 | MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2013: 3111-3119. |
29 | ZHU X J, GHAHRAMANI Z. Learning from labeled and unlabeled data with label propagation[R]. Pittsburgh, PA: Carnegie Mellon University, 2002:237-244. |
30 | VELIČKOVIĆ P, FEDUS W, HAMILTON W L, et al. Deep graph infomax[EB/OL]. [2021-06-01].. |
[1] | Yuxin HUANG, Jialong XU, Zhengtao YU, Shukai HOU, Jiaqi ZHOU. Unsupervised text sentiment transfer method based on generation prompt [J]. Journal of Computer Applications, 2024, 44(9): 2667-2673. |
[2] | Jieru JIA, Jianchao YANG, Shuorui ZHANG, Tao YAN, Bin CHEN. Unsupervised person re-identification based on self-distilled vision Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2893-2902. |
[3] | Shibin LI, Jun GONG, Shengjun TANG. Semi-supervised heterophilic graph representation learning model based on Graph Transformer [J]. Journal of Computer Applications, 2024, 44(6): 1816-1823. |
[4] | Wenping ZHENG, Huilin GE, Meilin LIU, Gui YANG. Node classification algorithm fusing 2-connected motif-structure information [J]. Journal of Computer Applications, 2024, 44(5): 1464-1470. |
[5] | Xiawuji, Heming HUANG, Gengzangcuomao, Yutao FAN. Survey of extractive text summarization based on unsupervised learning and supervised learning [J]. Journal of Computer Applications, 2024, 44(4): 1035-1048. |
[6] | Junjie ZHU, Li YU, Shengwen LI, Changzheng ZHOU. Technology term recognition with comprehensive constituency parsing [J]. Journal of Computer Applications, 2024, 44(4): 1072-1079. |
[7] | Dapeng XU, Xinmin HOU. Feature selection method for graph neural network based on network architecture design [J]. Journal of Computer Applications, 2024, 44(3): 663-670. |
[8] | Rui JIANG, Wei LIU, Cheng CHEN, Tao LU. Asymmetric unsupervised end-to-end image deraining network [J]. Journal of Computer Applications, 2024, 44(3): 922-930. |
[9] | Jingxin LIU, Wenjing HUANG, Liangsheng XU, Chong HUANG, Jiansheng WU. Unsupervised feature selection model with dictionary learning and sample correlation preservation [J]. Journal of Computer Applications, 2024, 44(12): 3766-3775. |
[10] | Yongjiang LIU, Bin CHEN. Pixel-level unsupervised industrial anomaly detection based on multi-scale memory bank [J]. Journal of Computer Applications, 2024, 44(11): 3587-3594. |
[11] | Pei ZHAO, Yan QIAO, Rongyao HU, Xinyu YUAN, Minyue LI, Benchu ZHANG. Multivariate time series anomaly detection based on multi-domain feature extraction [J]. Journal of Computer Applications, 2024, 44(11): 3419-3426. |
[12] | Nengbing HU, Biao CAI, Xu LI, Danhua CAO. Graph classification method based on graph pooling contrast learning [J]. Journal of Computer Applications, 2024, 44(11): 3327-3334. |
[13] | Wei TONG, Liyang HE, Rui LI, Wei HUANG, Zhenya HUANG, Qi LIU. Efficient similar exercise retrieval model based on unsupervised semantic hashing [J]. Journal of Computer Applications, 2024, 44(1): 206-216. |
[14] | Tian HE, Zongxin SHEN, Qianqian HUANG, Yanyong HUANG. Adaptive learning-based multi-view unsupervised feature selection method [J]. Journal of Computer Applications, 2023, 43(9): 2657-2664. |
[15] | Li XU, Xiangyuan FU, Haoran LI. Spatial-temporal traffic flow prediction model based on gated convolution [J]. Journal of Computer Applications, 2023, 43(9): 2760-2765. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||