[1] 涂存超,杨成,刘知远,等.网络表示学习综述[J].中国科学:信息科学,2017,47(8):980-996.(TU C C, YANG C, LIU Z Y, et al. Network representation learning:an overview[J]. SCIENTIA SINICA Informationis, 2017, 47(8):980-996.) [2] PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk:online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2014:701-710. [3] GROVER A, LESKOVEC J. Node2Vec:scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2016:855-864. [4] TANG J, QU M, WANG M, et al. LINE:large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web. New York:ACM, 2015:1016-1077. [5] DENG J, DONG W, SOCHER R, et al. ImageNet:a large-scale hierarchical image database[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2009:248-255. [6] REN S, HE K, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [7] BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs[EB/OL].[2018-10-13]. https://arxiv.org/pdf/1312.6203. [8] DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]//Proceedings of the 30th Conference on Neural Information Processing Systems. New York:JMLR, 2016:3837-3845. [9] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL].[2018-11-20]. https://arxiv.org/pdf/1609.02907. [10] NIEPERT M, AHMED M, KUTZKOV K. Learning convolutional neural networks for graphs[C]//Proceedings of the 33nd International Conference on Machine Learning. New York:PMLR, 2016:2014-2023. [11] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL].[2018-09-10]. https://arxiv.org/pdf/1710.10903. [12] GAO H Y, WANG Z, JI S. Large-scale learnable graph convolutional networks[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2018:1416-1424. [13] SHERVASHIDZE N, SCHWEITZER P, VAN LEEUWEN E J, et al. Weisfeiler-Lehman graph kernels[J]. Journal of Machine Learning Research, 2011, 12(9):2539-2561. [14] YING R, HE R, CHEN K, et al. Graph convolutional neural networks for web-scale recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2018:974-983. [15] CHEN J, MA T, XIAO C. FastGCN:fast learning with graph convolutional networks via importance sampling[EB/OL].[2018-12-20]. https://arxiv.org/pdf/1801.10247. [16] HAMILTON W, YING Z, LESKOVEC J. Inductive representation learning on large graphs[C]//Proceedings of the 2017 Conference on Neural Information Processing Systems. San Mateo, CA:Morgan Kaufmann, 2017:1024-1034. [17] XU K, LI C, TIAN Y, et al. Representation learning on graphs with jumping knowledge networks[C]//Proceedings of the 35th International Conference on Machine Learning. New York:JMLR, 2018:5453-5462. [18] ZHUANG C, MA Q. Dual graph convolutional networks for graph-based semi-supervised classification[C]//Proceedings of the 2018 World Wide Web Conference. New York:ACM, 2018:499-508. [19] LYU L, ZHOU T. Link prediction in complex networks:a survey[J]. Physica A:Statistical Mechanics and its Applications, 2011, 390(6):1150-1170. [20] JACCARD P. The distribution of the flora in the alpine zone[J]. New Phytologist, 1912, 11(2):37-50. [21] ADAMIC L, ADAR E. How to search a social network[J]. Social Networks, 2005, 27(3):187-203. [22] YANG Z, COHEN W W, SALAKHUTDINOV R. Revisiting semi-supervised learning with graph embeddings[C]//Proceedings of the 33rd International Conference on Machine Learning. New York:JMLR, 2016:40-48. [23] SHI C, LI Y, ZHANG J, et al. A survey of heterogeneous information network analysis[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(1):17-37. |