Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (4): 1065-1071.DOI: 10.11772/j.issn.1001-9081.2021071265
Special Issue: CCF第36届中国计算机应用大会 (CCF NCCA 2021)
• The 36 CCF National Conference of Computer Applications (CCF NCCA 2020) • Previous Articles Next Articles
Xiaopeng YU1,2, Ruhan HE1,2, Jin HUANG2,3(), Junjie ZHANG1,2, Xinrong HU2,3
Received:
2021-07-16
Revised:
2021-08-20
Accepted:
2021-08-25
Online:
2021-08-20
Published:
2022-04-10
Contact:
Jin HUANG
About author:
YU Xiaopeng, born in 1994, M. S. candidate. His research interests include knowledge graph, natural language processing.Supported by:
余晓鹏1,2, 何儒汉1,2, 黄晋2,3(), 张俊杰1,2, 胡新荣2,3
通讯作者:
黄晋
作者简介:
余晓鹏(1994—),男,山西大同人,硕士研究生,CCF会员,主要研究方向:知识图谱、自然语言处理基金资助:
CLC Number:
Xiaopeng YU, Ruhan HE, Jin HUANG, Junjie ZHANG, Xinrong HU. Knowledge graph embedding model based on improved Inception structure[J]. Journal of Computer Applications, 2022, 42(4): 1065-1071.
余晓鹏, 何儒汉, 黄晋, 张俊杰, 胡新荣. 基于改进Inception结构的知识图谱嵌入模型[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1065-1071.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021071265
模型 | 评分函数 | 参数 | 模型 | 评分函数 | 参数 |
---|---|---|---|---|---|
TransE | DisMult | ||||
TransR | CompIEx | ||||
ManifoldE | ConvE | ||||
RotatE | InceE | ||||
Rescal |
Tab. 1 Knowledge graph embedding model and scoring function
模型 | 评分函数 | 参数 | 模型 | 评分函数 | 参数 |
---|---|---|---|---|---|
TransE | DisMult | ||||
TransR | CompIEx | ||||
ManifoldE | ConvE | ||||
RotatE | InceE | ||||
Rescal |
数据集 | #Relation | #Entity | #Triplet | ||
---|---|---|---|---|---|
Train | Valid | Test | |||
FB15k | 1 345 | 14 951 | 483 142 | 50 000 | 59 071 |
WN18 | 18 | 40 943 | 141 442 | 5 000 | 5 000 |
Kinship | 25 | 104 | 8 544 | 1 068 | 1 074 |
Tab. 2 Dataset statistics
数据集 | #Relation | #Entity | #Triplet | ||
---|---|---|---|---|---|
Train | Valid | Test | |||
FB15k | 1 345 | 14 951 | 483 142 | 50 000 | 59 071 |
WN18 | 18 | 40 943 | 141 442 | 5 000 | 5 000 |
Kinship | 25 | 104 | 8 544 | 1 068 | 1 074 |
模型 | MRR | Hit@1/% | Hit@3/% | Hit@10/% |
---|---|---|---|---|
CompIEx | 0.823 | 73.3 | 89.9 | 97.1 |
ConvE | 0.833 | 73.8 | 91.7 | 98.1 |
ConvKB | 0.614 | 43.6 | 75.5 | 95.3 |
R-GCN | 0.109 | 3.0 | 8.8 | 23.9 |
SimplE | 0.752 | 62.6 | 85.4 | 97.2 |
RotatE | 0.843 | 76.0 | 91.9 | 97.8 |
HAKE | 0.852 | 76.9 | 92.8 | 98.0 |
InteractE | 0.777 | 66.4 | 87.0 | 95.9 |
CompGCN | 0.778 | 66.7 | 86.8 | 96.7 |
CoKE | 0.793 | 69.3 | 87.8 | 95.4 |
ArcE | 0.864 | 78.5 | 93.9 | 98.7 |
InceE | 0.873 | 80.1 | 93.7 | 98.3 |
Tab. 3 Experimental results of different models on Kinship dataset
模型 | MRR | Hit@1/% | Hit@3/% | Hit@10/% |
---|---|---|---|---|
CompIEx | 0.823 | 73.3 | 89.9 | 97.1 |
ConvE | 0.833 | 73.8 | 91.7 | 98.1 |
ConvKB | 0.614 | 43.6 | 75.5 | 95.3 |
R-GCN | 0.109 | 3.0 | 8.8 | 23.9 |
SimplE | 0.752 | 62.6 | 85.4 | 97.2 |
RotatE | 0.843 | 76.0 | 91.9 | 97.8 |
HAKE | 0.852 | 76.9 | 92.8 | 98.0 |
InteractE | 0.777 | 66.4 | 87.0 | 95.9 |
CompGCN | 0.778 | 66.7 | 86.8 | 96.7 |
CoKE | 0.793 | 69.3 | 87.8 | 95.4 |
ArcE | 0.864 | 78.5 | 93.9 | 98.7 |
InceE | 0.873 | 80.1 | 93.7 | 98.3 |
模型 | FB15k | |||
---|---|---|---|---|
MRR | Hit@1/% | Hit@3/% | Hit@10/% | |
TransE | 0.463 | 29.7 | 57.8 | 74.9 |
HOIE | 0.524 | 40.2 | 61.3 | 73.9 |
SimplEx | 0.727 | 66.0 | 77.3 | 83.8 |
ConvE | 0.657 | 55.8 | 72.3 | 83.1 |
R-GCN | 0.696 | 60.1 | 76.0 | 84.2 |
RotatE | 0.797 | 74.6 | 83.0 | 88.4 |
RSNs | 0.780 | 72.2 | ― | 87.3 |
QuatRE | 0.808 | 75.1 | 85.1 | 89.6 |
InceE | 0.815 | 76.6 | 85.0 | 89.6 |
Tab. 4 Experimental comparison results of different models on FB15k dataset
模型 | FB15k | |||
---|---|---|---|---|
MRR | Hit@1/% | Hit@3/% | Hit@10/% | |
TransE | 0.463 | 29.7 | 57.8 | 74.9 |
HOIE | 0.524 | 40.2 | 61.3 | 73.9 |
SimplEx | 0.727 | 66.0 | 77.3 | 83.8 |
ConvE | 0.657 | 55.8 | 72.3 | 83.1 |
R-GCN | 0.696 | 60.1 | 76.0 | 84.2 |
RotatE | 0.797 | 74.6 | 83.0 | 88.4 |
RSNs | 0.780 | 72.2 | ― | 87.3 |
QuatRE | 0.808 | 75.1 | 85.1 | 89.6 |
InceE | 0.815 | 76.6 | 85.0 | 89.6 |
模型 | WN18 | |||
---|---|---|---|---|
MRR | Hit@1/% | Hit@3/% | Hit@10/% | |
TransE | 0.495 | 11.3 | 88.8 | 94.3 |
HOIE | 0.938 | 93.0 | 94.5 | 94.9 |
SimplEx | 0.941 | 93.6 | 94.5 | 94.7 |
ConvE | 0.942 | 93.5 | 94.7 | 95.5 |
R-GCN | 0.696 | 60.1 | 76.0 | 84.2 |
RotatE | 0.949 | 94.4 | 95.2 | 95.9 |
RSNs | 0.940 | 92.2 | ― | 95.3 |
QuatRE | 0.939 | 92.3 | 95.3 | 96.3 |
InceE | 0.949 | 94.5 | 95.1 | 95.5 |
Tab. 5 Experimental comparison results of different models on WN18 dataset
模型 | WN18 | |||
---|---|---|---|---|
MRR | Hit@1/% | Hit@3/% | Hit@10/% | |
TransE | 0.495 | 11.3 | 88.8 | 94.3 |
HOIE | 0.938 | 93.0 | 94.5 | 94.9 |
SimplEx | 0.941 | 93.6 | 94.5 | 94.7 |
ConvE | 0.942 | 93.5 | 94.7 | 95.5 |
R-GCN | 0.696 | 60.1 | 76.0 | 84.2 |
RotatE | 0.949 | 94.4 | 95.2 | 95.9 |
RSNs | 0.940 | 92.2 | ― | 95.3 |
QuatRE | 0.939 | 92.3 | 95.3 | 96.3 |
InceE | 0.949 | 94.5 | 95.1 | 95.5 |
模型 | MRR | Hit@1/% | Hit@3/% | Hit@10/% |
---|---|---|---|---|
ConvE | 0.833 | 73.8 | 91.7 | 98.1 |
InteractE | 0.777 | 66.4 | 87.0 | 95.9 |
ArcE | 0.864 | 78.5 | 93.9 | 98.7 |
InceE | 0.873 | 80.1 | 93.7 | 98.3 |
Tab. 6 Experimental results of different models based on CNN on Kinship dataset
模型 | MRR | Hit@1/% | Hit@3/% | Hit@10/% |
---|---|---|---|---|
ConvE | 0.833 | 73.8 | 91.7 | 98.1 |
InteractE | 0.777 | 66.4 | 87.0 | 95.9 |
ArcE | 0.864 | 78.5 | 93.9 | 98.7 |
InceE | 0.873 | 80.1 | 93.7 | 98.3 |
模型 | MRR | Hit@1/% | Hit@3/% | Hit@3/% |
---|---|---|---|---|
InceE-Residual | 0.860 | 77.9 | 93.6 | 98.3 |
InceE | 0.873 | 80.1 | 93.7 | 98.3 |
Tab. 7 Experimental results of InceE model whether to add residual learning on Kinship dataset
模型 | MRR | Hit@1/% | Hit@3/% | Hit@3/% |
---|---|---|---|---|
InceE-Residual | 0.860 | 77.9 | 93.6 | 98.3 |
InceE | 0.873 | 80.1 | 93.7 | 98.3 |
1 | BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. New York:ACM, 2008: 1247-1250. 10.1145/1376616.1376746 |
2 | MILLER G A. WordNet: a lexical database for English[J]. Communications of the ACM,1995, 38(11): 39-41. 10.1145/219717.219748 |
3 | SUCHANEK F M, KASNECI G, WEIKUM G. YAGO: a core of semantic knowledge[C]// Proceedings of the 16th International Conference on World Wide Web. New York: ACM, 2007: 697-706. 10.1145/1242572.1242667 |
4 | ZHANG F Z, YUAN N J, LIAN D, et al. Collaborative knowledge base embedding for recommender systems[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 353-362. 10.1145/2939672.2939673 |
5 | 刘知远,孙茂松,林衍凯,等.知识表示学习研究进展[J].计算机研究与发展,2016,53(2):247-261. 10.7544/issn1000-1239.2016.20160020 |
LIU Z Y, SUN M S, LIN Y K, et al. Knowledge representation learning: a review[J].Journal of Computer Research and Development,2016,53(2):247-261. 10.7544/issn1000-1239.2016.20160020 | |
6 | BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. New York: ACM, 2013: 2787-2795. 10.1007/978-3-662-44848-9_28 |
7 | NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C]// Proceedings of the 28th International Conference on Machine Learning. New York: ACM, 2011: 809-816. 10.1145/2187836.2187874 |
8 | DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 1811-1818. |
9 | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1-9. 10.1109/cvpr.2015.7298594 |
10 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
11 | WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[C]// Proceedings of the 28th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2014: 1112-1119. 10.1609/aaai.v33i01.33017152 |
12 | LIN Y, LIU Z, SUN M,et al. Learning entity and relation embeddings for knowledge graph completion[C]// Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press,2015:2181-2187. |
13 | XIAO H, HUANG M L, ZHU X Y. From one point to a manifold: Knowledge graph embedding for precise link prediction[C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. Palo Alto:AAAI Press, 2016: 1315-1321. |
14 | SUN Z Q, DENG Z H, NIE J Y, et al. RotatE: Knowledge graph embedding by relational rotation in complex space[C]// Proceedings of the 2019 International Conference on Learning Representations. New Orleans: ICLR, 2019: 1-18. |
15 | KAZEMI S M, POOLE D. Simple embedding for link prediction in knowledge graphs[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, Inc., 2018: 4289-4300. |
16 | YANG B S, YIH W T, HE X D, et al. Embedding entities and relations for learning and inference in knowledge bases[EB/OL]. [2015-08-29]. . |
17 | TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: PMLR.org, 2016:2071-2080. |
18 | LIU H X, WU Y X, YANG Y M. Analogical inference for multi-relational embeddings[C]// Proceedings of the 34th International Conference on Machine Learning. New York: PMLR.org, 2017: 2168-2178. |
19 | DONG X, GABRILOVICH E, HEITZ G, et al. Knowledge vault: a web-scale approach to probabilistic knowledge fusion[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 601-610. 10.1145/2623330.2623623 |
20 | SOCHER R, CHEN D Q, MANNING C D, et al. Reasoning with neural tensor networks for knowledge base completion[C]// Proceedings of the 26th Neural Information Processing Systems. Red Hook: Curran Associates, Inc., 2013: 926-934. |
21 | NGUYEN D Q, NGUYEN T, NGUYEN D Q, et al. A novel embedding model for knowledge base completion based on convolutional neural network[C]// Proceedings of the 2018 North American Chapter of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2018: 327-333. 10.18653/v1/n18-2053 |
22 | VASHISHTH S, SANYAL S, NITIN V, et al. InteractE: Improving convolution-based knowledge graph embeddings by increasing feature interactions[C]// Proceedings of the 2020 AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 3009-3016. 10.1609/aaai.v34i03.5694 |
23 | SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]// Proceedings of the 2018 European Semantic Web Conference. Cham: Springer, 2018: 593-607. 10.1007/978-3-319-93417-4_38 |
24 | LIN X V, SOCHER R, XIONG C M. Multi-hop knowledge graph reasoning with reward shaping[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2018:3243-3253. 10.18653/v1/d18-1362 |
25 | ZHANG Z Q, CAI J Y, ZHANG Y D, et al. Learning hierarchy-aware knowledge graph embeddings for link prediction[C]// Proceedings of the 2020 AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 3065-3072. 10.1609/aaai.v34i03.5701 |
26 | VASHISHTH S, SANYAL S, NITIN V, et al. Composition-based multi-relational graph convolutional networks[C]// Proceedings of the Eighth International Conference on Learning Representations, New Orleans: ICLR, 2020: 1-14. 10.1609/aaai.v34i03.5694 |
27 | WANG Q, HUANG P P, WANG H F, et al. CoKE: Contextualized knowledge graph embedding [EB/OL]. [2020-04-04]. . |
28 | REN F L, LI J C, ZHANG H H, et al. Knowledge graph embedding with atrous convolution and residual learning[C]// Proceedings of the 28th International Conference on Computational Linguistics. Barcelona: International Committee on Computational Linguistics, 2020: 1532-1543. 10.18653/v1/2020.coling-main.134 |
29 | NICKEL M, ROSASCO L, POGGIO T. Holographic embeddings of knowledge graphs[C]// Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2016:1955-1961. |
30 | GUO L B, SUN Z Q, HU W. Learning to exploit long-term relational dependencies in knowledge graphs[C]// Proceedings of the 36th International Conference on Machine Learning. Birmingham: PMLR, 2019: 2505-2514. 10.1162/dint_a_00016 |
31 | NGUYEN D Q, VU T, NGUYEN T D, et al. QuatRE: relation-aware quaternions for knowledge graph embeddings[EB/OL].[2020-09-26]. . 10.1109/tpami.2022.3147798/mm1 |
[1] | Doudou LI, Wanggen LI, Yichun XIA, Yang SHU, Kun GAO. Skeleton-based action recognition based on feature interaction and adaptive fusion [J]. Journal of Computer Applications, 2023, 43(8): 2581-2587. |
[2] | Keke WANG, Yu ZHU, Xiaoying WANG, Jianqiang HUANG, Tengfei CAO. Heterogeneous hypernetwork representation learning method with hyperedge constraint [J]. Journal of Computer Applications, 2023, 43(12): 3654-3661. |
[3] | YUAN Lining, LIU Zhao. Graph representation learning by autoencoder with one-shot aggregation [J]. Journal of Computer Applications, 2023, 43(1): 8-14. |
[4] | Yuyu MENG, Jing GUO. Link prediction algorithm based on information entropy improved PCA model [J]. Journal of Computer Applications, 2022, 42(9): 2823-2829. |
[5] | Huazhong JIN, Xiuyang ZHANG, Zhiwei YE, Wenqi ZHANG, Xiaoyu XIA. Image denoising model based on approximate U-shaped network structure [J]. Journal of Computer Applications, 2022, 42(8): 2571-2577. |
[6] | Tengyue HAN, Shaozhang NIU, Wen ZHANG. Multimodal sequential recommendation algorithm based on contrastive learning [J]. Journal of Computer Applications, 2022, 42(6): 1683-1688. |
[7] | Yimin CAO, Lei CAI, Jingyang GAO. Gene data generation method based on generative adversarial network [J]. Journal of Computer Applications, 2022, 42(3): 783-790. |
[8] | Renzhi PAN, Fulan QIAN, Shu ZHAO, Yanping ZHANG. Recommendation model for user attribute preference modeling based on convolutional neural network interaction [J]. Journal of Computer Applications, 2022, 42(2): 404-411. |
[9] | Guangfu CHEN, Haibo WANG, Yanping LIAN. Link prediction in directed network based on high-order self-included collaborative filtering [J]. Journal of Computer Applications, 2022, 42(10): 3060-3068. |
[10] | Hengxin LI, Kan CHANG, Yufei TAN, Mingyang LING, Tuanfa QIN. Color image demosaicking network based on inter-channel correlation and enhanced information distillation [J]. Journal of Computer Applications, 2022, 42(1): 245-251. |
[11] | CAI Biao, LI Ruicen, WU Yuanyuan. Impact and enhancement of similarity features on link prediction [J]. Journal of Computer Applications, 2021, 41(9): 2569-2577. |
[12] | BIAN Lingzhi, WANG Zhijie. Credit scoring model based on enhanced multi-dimensional and multi-grained cascade forest [J]. Journal of Computer Applications, 2021, 41(9): 2539-2544. |
[13] | ZHANG Yuanjun, ZHANG Xihuang. Dynamic network representation learning model based on graph convolutional network and long short-term memory network [J]. Journal of Computer Applications, 2021, 41(7): 1857-1864. |
[14] | NIU Kangli, CHEN Yuzhang, SHEN Junfeng, ZENG Zhangfan, PAN Yongcai, WANG Yichong. Dual-channel night vision image restoration method based on deep learning [J]. Journal of Computer Applications, 2021, 41(6): 1775-1784. |
[15] | HUANG Li, LU Long. Segmentation of ischemic stroke lesion based on long-distance dependency encoding and deep residual U-Net [J]. Journal of Computer Applications, 2021, 41(6): 1820-1827. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||