[1] 刘艳,钟萍,陈静,等.用于处理不平衡样本的改进近似支持向量机新算法[J].计算机应用,2014,34(6):1618-1621. (LIU Y, ZHONG P, CHEN J, et al. Modified proximal support vector machine algorithm for dealing with unbalanced samples[J]. Journal of Computer Applications, 2014, 34(6):1618-1621.) [2] de CARVALHO M G, LAENDER A H F, GONCALVES M A, et al. A genetic programming approach to record deduplication[J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(3):399-412. [3] dal BIANCO G, GALANTE R, HEUSER C A, et al. Tuning large scale deduplication with reduced effort[C]//Proceedings of the 25th International Conference on Scientific and Statistical Database Management. New York:ACM, 2013:No.18. [4] dal BIANCO G, GALANTE R, GONÇALVES M A, et al. A practical and effective sampling selection strategy for large scale deduplication[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(9):2305-2319. [5] WANG X, DONG L, YAN J. Maximum ambiguity-based sample selection in fuzzy decision tree induction[J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(8):1491-1505. [6] OUGIAROGLOU S, DIAMANTARAS K I, EVANGELIDIS G. Exploring the effect of data reduction on neural network and support vector machine classification[J]. Neurocomputing, 2018, 280:101-110. [7] SHEN X, MU L, LI Z, et al. Large-scale support vector machine classification with redundant data reduction[J]. Neurocomputing, 2016, 172:189-197. [8] 胡小生,钟勇.基于边界样本选择的支持向量机加速算法[J].计算机工程与应用, 2017, 53(3):169-173. (HU X S, ZHONG Y. SVM accelerated training algorithm based on border sample selection[J]. Computer Engineering and Applications, 2017, 53(3):169-173.) [9] DESSì N, PES B. Similarity of feature selection methods:An empirical study across data intensive classification tasks[J]. Expert Systems with Applications, 2015, 42(10):4632-4642. [10] ZHANG Y, YANG C, YANG A, et al. Feature selection for classification with class-separability strategy and data envelopment analysis[J]. Neurocomputing, 2015, 166:172-184. [11] BOLÓN-CANEDO V, SÁNCHEZ-MAROÑO N, ALONSO-BETANZOS A. Data classification using an ensemble of filters[J]. Neurocomputing, 2014, 135:13-20. [12] RIVERA W A, XANTHOPOULOS P. A priori synthetic over-sampling methods for increasing classification sensitivity in imbalanced data sets[J]. Expert Systems with Applications, 2016, 66:124-135. [13] MENARDI G, TORELLI N. Training and assessing classification rules with imbalanced data[J]. Data Mining and Knowledge Discovery, 2014, 28(1):92-122. [14] LóPEZ V, FERNáNDEZ A, HERRERA F. On the importance of the validation technique for classification with imbalanced datasets:addressing covariate shift when data is skewed[J]. Information Sciences, 2014, 257(2):1-13. [15] GAO M, HONG X, HARRIS C J. Construction of neurofuzzy models for imbalanced data classification[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(6):1472-1488. [16] DATTA S, DAS S. Near-Bayesian support vector machines for imbalanced data classification with equal or unequal misclassification costs[J]. Neural Networks, 2015, 70:39-52. [17] 刘艳,钟萍,陈静,等.用于处理不平衡样本的改进近似支持向量机新算法[J].计算机应用,2014,34(6):1618-1621. (LIU Y, ZHONG P, CHEN J, et al. Modified proximal support vector machine algorithm for dealing with unbalanced samples[J]. Journal of Computer Applications, 2014, 34(6):1618-1621.) [18] 袁玉波,顾依依,谈询滔,等.一种基于凸边界的学习样本抽取方法:CN201711314980.2[P]. 2018-05-18. (YUAN Y B, GU Y Y, TAN X T, et al. A learning sample extraction method based on convex boundary:CN201711314980.2[P]. 2018-05-18.) |