[1] 王洋,单征,赵炳麟,等基于静态行为轨迹的异常特征检测技术[J].计算机应用研究,2017,34(8):2434-2438. (WANG Y, SHAN Z, ZHAO B L, et al. Anomaly feature detection technology based on static behavior trajectories[J]. Application Research of Computers, 2017, 34(8):2434-2438.) [2] SCHULTZ M, ESKIN E,ZADOK E, et al. Data mining methods for detection of new malicious executables[C]//Proceedings of the 2001 IEEE Symposium on Research in Security and Privacy. Piscataway, NJ:IEEE, 2001:38-49. [3] CHRISTODORESCU M, JHA S, SESHIA S A, et al. Semantics-aware malware detection[C]//Proceedings of the 2005 IEEE Symposium on Security and Privacy. Piscataway, NJ:IEEE, 2005:32-46. [4] KOLTER J Z, MALOOF M A. Learning to detect and classify maliciousexecutables in the wild[J]. Journal of Machine Learning Research, 2006, 7(1):2721-2744. [5] NATARAJ L, KARTHIKEYAN S, JACOB G, et al. Malware images:visualization and automatic classification[C]//Proceedings of the 8th International Symposium on Visualization for Cyber Security. New York:ACM, 2011:No.4. [6] 韩晓光,曲武,姚宣霞,等.基于纹理指纹的恶意代码变种检测方法研究[J].通信学报,2014,35(8):125-136. (HAN X G, QU W, YAO X X, et al. Research on malicious code variant detection method based on texture fingerprint[J]. Journal on Communications, 2014, 35(8):125-136.) [7] BINDOG. GitHub[EB/OL].[2018-08-18]. https://github.com/bindog/ToyMalwareClassification/. [8] ZHANG F, ZHAO T. Malware detection and classification based on n-grams attribute similarity[C]//Proceedings of 2017 IEEE International Conference on Computational Science and Engineering and IEEE International Conference on Embedded and Ubiquitous Computing. Washington, DC:IEEE Computer Society, 2017:793-796. [9] KWON I, IM E G. Extracting the representative API call patterns of malware families using recurrent neural network[C]//Proceedings of the 2017 International Conference on Research in Adaptive and Convergent Systems. New York:ACM, 2017:202-207. [10] FU J, XUE J, WANG Y, et al. Malware visualization for fine-grained classification[J]. IEEE Access, 2018, 6:14510-14523. [11] DING Y, ZHU S. Malware detection based on deep learning algorithm[J]. Neural Computing and Applications, 2017, 31(2):461-472. [12] 李雪虎,王发明,战凯.基于大样本的随机森林恶意代码检测与分类算法[J].信息技术与网络安全,2018,37(7):3-5,21. (LI X H, WANG F M, ZHAN K. Large sample-based random forest malicious code detection and classification algorithm[J]. Information Technology and Network Security, 2018, 37(7):3-5,21.) [13] 潘良敏.基于GIST全局特征的钓鱼网站聚类算法研究[D].长沙:中南林业科技大学,2018:1-58. (PAN L M. Research on phishing website clustering algorithm based on the global characteristics of GIST[D]. Changsha:Central South University of Forestry and Technology, 2018:1-58.) [14] OLIVA A, TORRALBA A. Modeling the shape of the scene:a holistic representation of the spatial envelope[J].International Journal of Computer Vision,2001,42(3):145-175. [15] 戴逸辉,殷旭东.基于随机森林的恶意代码检测[J].网络空间安全,2018,9(2):70-75. (DAI Y H, YIN X D. Malicious code detection based on random forest[J]. Cyberspace Security, 2018,9(2):70-75.) |