[1] 国家计算机网络应急技术处理协调中心. 2019年中国互联网网络安全报告[R]. 北京:国家计算机网络应急技术处理协调中心,2020:24. (National Computer Network Emergency Response Technical Team/Coordination Center of China. 2019 China Internet Cybersecurity Report[R]. Beijing:CNCERT/CC,2020:24.) [2] FIRDAUS A,ANUAR N B,KARIM A,et al. Discovering optimal features using static analysis and a genetic search based method for Android malware detection[J]. Frontiers of Information Technology and Electronic Engineering,2018,19(6):712-736. [3] YAN P,YAN Z. A survey on dynamic mobile malware detection[J]. Software Quality Journal,2018,26(3):891-919. [4] QIU J,LUO W,PAN L,et al. Predicting the impact of Android malicious samples via machine learning[J]. IEEE Access,2019, 7:66304-66316. [5] EL MERABET H,HAJRAOUI A. A survey of malware detection techniques based on machine learning[J]. International Journal of Advanced Computer Science and Applications,2019,10(1):366-373. [6] KRIZHEVSKY A,SUTSKEVER I,HINTON G E,et al. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM,2017,60(6):84-90. [7] 王博, 蔡弘昊, 苏旸. 基于VGGNet的恶意代码变种分类[J]. 计算机应用,2020,40(1):162-167.(WANG B,CAI H H,SU Y. Classification of malicious code variants based on VGGNet[J]. Journal of Computer Applications,2020,40(1):162-167.) [8] 王怀军, 房鼎益, 李光辉, 等. 基于变形的二进制代码混淆技术研究[J]. 四川大学学报:工程科学版,2014,46(1):14-21. (WANG H J,FANG D Y,LI G H,et al. Research on deformation based binary code obfuscation technology[J]. Journal of Sichuan University(Engineering Science Edition),2014,46(1):14-21.) [9] NIKOLOPOULOS S,POLENAKIS I. A graph-based model for malware detection and classification using system-call groups[J]. Journal of Computer Virology and Hacking Techniques,2017,13(1):29-46. [10] HAN L,FU C,ZOU D,et al. Task-based behavior detection of illegal codes[J]. Mathematical and Computer Modelling,2012, 55(1/2):80-86. [11] 张灿岩. 用于恶意代码检测的沙箱技术研究[D]. 哈尔滨:哈尔滨工程大学,2013:1.(ZHANG C Y. Research on sandbox technology for malicious code detection[D]. Harbin:Harbin Engineering University,2013:1.) [12] 秦中元, 王志远, 吴伏宝, 等. 基于多级签名匹配算法的Android恶意应用检测[J]. 计算机应用研究,2016,33(3):891-895. (QIN Z Y,WANG Z Y,WU F B,et al. Android malware detection based on multi-level signature matching[J]. Application Research of Computers,2016,33(3):891-895.) [13] WILLEMS C,HOLZ T,FREILING F,et al. Toward automated dynamic malware analysis using CWSandbox[J]. IEEE on Security and Privacy,2007,5(2):32-39. [14] TANABE R,UENO W,ISHII K,et al. Evasive malware via identifier implanting[C]//Proceedings of the 2018 International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment,LNCS 10885. Cham:Springer,2018:162-184. [15] KI Y,KIM E,KIM H. A novel approach to detect malware based on API call sequence analysis[J]. International Journal of Distributed Sensor Networks,2015,4:659101. [16] PARK Y,REEVES D,MULUKUTLA V,et al. Fast malware classification by automated behavioral graph matching[C]//Proceedings of the 6th Annual Workshop on Cyber Security and Information Intelligence Research. New York:ACM, 2010:No. 45. [17] KIM T,KANG B,RHO M,et al. A multimodal deep learning method for Android malware detection using various features[J]. IEEE Transactions on Information Forensics and Security,2019, 14(3):773-788. [18] 荣俸萍, 方勇, 左政, 等. MACSPMD:基于恶意API调用序列模式挖掘的恶意代码检测[J]. 计算机科学,2018,45(5):131-138. (RONG F P, FANG Y, ZUO Z, et al. MACSPMD:malicious API call sequential pattern mining based malware detection[J]. Computer Science,2018,45(5):131-138.) [19] NATARAJ L,KARTHIKEYAN S,JACOB G,et al. Malware images:visualization and automatic classification[C]//Proceedings of the 8th International Symposium on Visualization for Cyber Security. New York:ACM,2011:No. 4. [20] BHODIA N, PRAJAPATI P, DI TROIA F, et al. Transfer learning for image-based malware classification[EB/OL].[2020-02-10]. https://arxiv.org/pdf/1903.11551.pdf. [21] FU J,XUE J,WANG Y,et al. Malware visualization for finegrained classification[J]. IEEE Access,2018,6:14510-14523. [22] CUI Z,XUE F,CAI X,et al. Detection of malicious code variants based on deep learning[J]. IEEE Transactions on Industrial Informatics,2018,14(7):3187-3196. |