[1] 朱越, 姜远, 周志华. 一种基于多示例多标记学习的新标记学习方法[J]. 中国科学:信息科学, 2018, 48(12):1670-1680. (ZHU Y, JIANG Y, ZHOU Z H. Multi-instance multi-label new label learning[J]. Scientia Sinica (Information), 2018, 48(12):1670-1680.) [2] SCHAPIRE R E, SINGER Y. BoosTexter:a boosting-based system for text categorization[J]. Machine Learning, 2000, 39(2/3):135-168. [3] DIPLARIS S, TSOUMAKAS G, MITKAS P A, et al. Protein classification with multiple algorithms[C]//Proceedings of the 2005 Panhellenic Conference on Informatics, LNCS 3746. Berlin:Springer, 2005:448-456. [4] 彭利红, 刘海燕, 任日丽, 等. 基于多标记学习预测药物-靶标相互作用[J]. 计算机工程与应用, 2017, 53(15):260-265. (PENG L H, LIU H Y, REN R L, et al. Predicting drug-target interactions with multi-label learning[J]. Computer Engineering and Applications, 2017, 53(15):260-265.) [5] LIU G P, LI G Z, WANG Y L, et al. Modelling of inquiry diagnosis for coronary heart disease in traditional Chinese medicine by using multi-label learning[J]. BMC Complementary and Alternative Medicine, 2010, 10(1):No.37. [6] DAI L, ZHANG J, LI C, et al. Multi-label feature selection with application to TCM state identification[J/OL]. Concurrency and Computation:Practice and Experience, 2018:No.e4634.[2019-01-10]. https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4634. [7] GUYON I, ELISSEEFF A. An introduction to variable and feature selection[J]. Journal of Machine Learning Research, 2003, 3:1157-1182. [8] 宋国杰, 唐世渭, 杨冬青, 等. 基于最大熵原理的空间特征选择方法[J]. 软件学报, 2003, 14(9):1544-1550. (SONG G J, TANG S W, YANG D Q, et al. A spatial feature selection method based on maximum entropy theory[J]. Journal of Software, 2003, 14(9):1544-1550.) [9] GUYON I, WESTON J, BARNHILL S, et al. Gene selection for cancer classification using support vector machines[J]. Machine Learning, 2002, 46(1/2/3):389-422. [10] DY J G. BRODLEY C E. Feature selection for unsupervised learning[J]. Journal of Machine Learning Research, 2004,5:845-889. [11] BATTITI R. Using mutual information for selecting features in supervised neural net learning[J]. IEEE Transactions on Neural Networks, 1994, 5(4):537-550. [12] PENG H, LONG F, DING C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8):1226-1238. [13] LIN Y, LIU J, LIU J, et al. Multi-label feature selection based on max-dependency and min-redundancy[J]. Neurocomputing, 2015, 168:92-103. [14] LEE J, KIM D. Feature selection for multi-label classification using multivariate mutual information[J]. Pattern Recognition Letters, 2013, 34(3):349-357. [15] 朱颢东, 陈宁, 李红婵. 优化的互信息特征选择方法[J]. 计算机工程与应用, 2010, 46(26):122-124. (ZHU H D, CHEN N, LI H C. Optimized mutual information feature selection method[J]. Computer Engineering and Applications, 2010, 46(26):122-124.) [16] WANG J, WEI J, YANG Z, et al. Feature selection by maximizing independent classification information[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(4):828-841. [17] BROWN G, POCOCK A, ZHAO M, et al. Conditional likelihood maximization:a unifying framework for information theoretic feature selection[J]. Journal of Machine Learning Research, 2012, 13:27-66. [18] 蔡亚萍, 杨明. 一种利用局部标记相关性的多标记特征选择算法[J]. 南京大学学报(自然科学版), 2016, 52(4):693-704. (CAI Y P, YANG M. A multi-label feature selection algorithm by exploiting label correlations locally[J]. Journal of Nanjing University (Natural Science Edition), 2016, 52(4):693-704.) [19] 杨明, 蔡亚萍. 一种结合标记相关性的半监督多标记特征选择及分类方法:CN201610256462.9[P]. 2016-09-28[2019-01-10]. (YANG M, CAI Y P. A semi-supervised multi-label feature selection and classification method combined with marker correlation:CN201610256462.9[P]. 2016-09-28[2019-01-10].) [20] BRAYTEE A, LIU W, CATCHPOOLE D R, et al. Multi-label feature selection using correlation information[C]//Proceedings of the 2017 ACM Conference on Information and Knowledge Management. New York:ACM, 2017:1649-1656. [21] LIU L, ZHANG J, LI P, et al. A label correlation based weighting feature selection approach for multi-label data[C]//Proceedings of the 2016 International Conference on Web-Age Information Management, LNCS 9659. Cham:Springer, 2016:369-379. [22] SPOLAÔR N, MONARD M C, TSOUMAKAS G. A systematic review of multi-label feature selection and a new method based on label construction[J]. Neurocomputing, 2016, 180:3-15. [23] SHANNON C E. A mathematical theory of communication[J]. Bell System Technical Journal, 1948, 27(4):623-656. [24] ZHANG M, ZHOU Z. ML-KNN:a lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40(7):2038-2048. [25] ZHANG M, PEÑA J M, ROBLES V. Feature selection for multi-label naive Bayes classification[J]. Information Sciences, 2009, 179(19):3218-3229. [26] ZHANG Y, ZHOU Z H. Multi-label dimensionality reduction via dependence maximization[C]//Proceedings of the 23rd National Conference on Artificial Intelligence. Menlo Park, CA:AAAI Press, 2008, 3:1503-1505. [27] LIM H, LEE J, KIM D. Optimization approach for feature selection in multi-label classification[J]. Pattern Recognition Letters, 2017, 89:25-30. |