[1] 王治和,黄梦莹,杜辉,等. 基于密度峰值与密度聚类的集成算法[J].计算机应用,2019,39(2):398-402. (WANG Z H, HUANG M Y, DU H, et al. Integrated algorithm based on density peaks and density-based clustering J]. Journal of Computer Applications, 2019, 39(2):398-402.)
[2] McLOUGHLIN F, DUFFY A, CONLON M. A clustering approach to domestic electricity load profile characterisation using smart metering data[J]. Applied Energy, 2015, 141:190-199.
[3] ALI A-W, WU J, JENKINS N. K-means based load estimation of domestic smart meter measurements[J]. Applied Energy, 2016, 194:333-342.
[4] 杨辉华,王克,李灵巧,等.基于自适应布谷鸟搜索算法的K-means聚类算法及其应用[J].计算机应用,2016,36(8):2066-2070.(YANG H H, WANG K, LI L Q, et al. K-means clustering algorithm based on adaptive cuckoo search and its application[J]. Journal of Computer Applications, 2016, 36(8):2066-2070.)
[5] 黄韬,刘胜辉,谭艳娜.基于K-means聚类算法的研究[J].计算机技术与发展,2011,21(7):54-57.(HUANG T, LIU S H, TAN Y N. Research of clustering algorithm based on K-means[J]. Computer Technology and Development, 2011, 21(7):54-57.)
[6] 王骏,王士同,邓赵红. 特征加权距离与软子空间学习相结合的文本聚类新方法[J].计算机学报, 2012, 35(8):1655-1665. (WANG J, WANG S T, DENG Z H. A novel text clustering algorithm based on feature weighting distance and soft subspace learning[J]. Chinese Journal of Computers, 2012, 35(8):1655-1665.)
[7] 郁启麟. K-means算法初始聚类中心选择的优化[J]. 计算机系统应用, 2017, 26(5):170-174. (YU Q L. Optimization of initial clustering centers selection method for K-means algorithm[J]. Computer Systems & Applications, 2017, 26(5):170-174.)
[8] 周润物,李智勇,陈少淼,等.面向大数据处理的并行优化抽样聚类K-means算法[J].计算机应用,2016,36(2):311-315.(ZHOU R W, LI Z Y, CHEN S M, et al. Parallel optimization sampling clustering K-means algorithm for big data processing[J]. Journal of Computer Applications, 2016, 36(2):311-315.)
[9] 王丽娟,郝志峰,蔡瑞初,等. 基于随机取样的选择性K-means聚类融合算法[J]. 计算机应用, 2013, 33(7):1969-1972. (WANG L J, HAO Z F, CAI R C, et al. Selective K-means clustering ensemble based on random sampling[J]. Journal of Computer Applications, 2013, 33(7):1969-1972.)
[10] 毛典辉.基于MapReduce的Canopy-Kmeans改进算法[J]. 计算机工程与应用, 2012, 48(27):22-26. (MAO D H. Improved Canopy-Kmeans algorithm based on MapReduce[J]. Computer Engineering and Applications, 2012, 48(27):22-26.)
[11] 赵昱,陈琴,苏一丹,等. 基于邻域相似度的近邻传播聚类算法[J]. 计算机工程与设计, 2018, 39(7):1883-1888. (ZHAO Y, CHEN Q, SU Y D, et al. Affinity propagation clustering algorithm based on neighborhood similarity[J]. Computer Engineering and Design, 2018, 39(7):1883-1888.)
[12] 刘鹏,王明阳,王焱.基于自适应动态球半径的K邻域搜索算法[J]. 机械设计与制造工程, 2016, 45(6):83-86.(LIU P, WANG M Y, WANG Y. K domain search algorithm based on adaptive dynamic sphere radius[J]. Machine Design and Manufacturing Engineering, 2016, 45(6):83-86.)
[13] NGUYEN D, LE T, NGUYEN S. An algorithmic method of calculating neighborhood radius for clustering in-home activities within smart home environment[C]//Proceedings of the 7th International Conference on Intelligent Systems, Modelling and Simulation. Piscataway, NJ:IEEE, 2016:42-47.
[14] COELHO G P, BARBANTE C C, BOCCATO L, et al. Automatic feature selection for BCI:an analysis using the Davies-Bouldin index and extreme learning machines[C]//Proceedings of the 2012 International Joint Conference on Neural Networks. Piscataway, NJ:IEEE, 2012:1-8.
[15] THOMAS J C R, PEÑAS M S, MORA M. New version of Davies-Bouldin index for clustering validation based on cylindrical distance[C]//Proceedings of the 32nd International Conference of the Chilean Computer Science Society. Piscataway, NJ:IEEE, 2013:49-53. |