[1] 蔡晓妍,戴冠中,杨黎斌.谱聚类算法综述[J]. 计算机科学,2008,35(7):14-18. (CAI X Y, DAI G Z, YANG L B. Survey on spectral clustering algorithms[J]. Computer Science, 2008, 35(7):14-18.) [2] 申彦.大规模数据集高效数据挖掘算法研究[D].镇江:江苏大学, 2013:1-8. (SHEN Y. The research of high efficient data mining algorithms for massive data sets[D]. Zhenjiang:Jiangsu University, 2013:1-8.) [3] 唐东明. 聚类分析及其应用研究[D].成都:电子科技大学, 2010:13-27. (TANG D M. Study on clustering analysis and its applications[D]. Chengdu:University of Electronic Science and Technology of China, 2010:13-27.) [4] 贺玲,蔡益朝,杨征.高维数据聚类方法综述[J]. 计算机应用研究,2010,27(1):23-27. (HE L, CAI Y C, YANG Z. Survey of clustering algorithms for high-dimensional data[J]. Application Research of Computers, 2010, 27(1):23-27.) [5] 张文开.基于密度的层次聚类算法研究[D]. 合肥:中国科学技术大学, 2015:15-26. (ZHANG W K. Research on density-based hierarchical clustering algorithm[D]. Hefei:University of Science and Technology of China, 2015:15-26.) [6] 张蓉,彭宏.一种基于超图模式的高维空间数据聚类方法[J]. 计算机工程,2002,28(7):54-55. (ZHANG R, PENG H. Method for data clustering in a high dimensional space based on a hypergraph model[J]. Computer Engineering, 2002, 28(7):54-55.) [7] 冯少荣,肖文俊. DBSCAN聚类算法的研究与改进[J].中国矿业大学学报,2008,37(1):105-106. (FENG S R, XIAO W J. An improved DBSCAN clustering algorithm[J]. Journal of China University of Mining & Technology, 2008,37(1):105-106.) [8] 马春来,单洪,马涛,等.一种基于CFSFDP改进算法的重要地点识别方法研究[J].计算机应用研究,2017,34(1):136-140. (MA C L, SHAN H, MA T, et al. Research on important places identification method based on improved CFSFDP algorithm[J]. Application Research of Computers, 2017, 34(1):136-140.) [9] 马春来,单洪,马涛.一种基于簇中心点自动选择策略的密度峰值聚类算法[J].计算机科学,2016,43(7):255-258. (MA C L, SHAN H, MA T. Improved density peaks based clustering algorithm with strategy choosing cluster center automatically[J]. Computer Science, 2016,43(7):255-258.) [10] 蒋礼青,张明新,郑金龙.快速搜索与发现密度峰值聚类算法的优化研究[J].计算机应用研究,2016,33(11):3251-3254. (JIANG L Q, ZHANG M X, ZHENG J L. Optimization of clustering by fast search and find of density peaks[J]. Application Research of Computers, 2016, 33(11):3251-3254.) [11] 李金泽,徐喜荣,潘子琦,等.改进的自适应谱聚类NJW算法[J].计算机科学,2017,44(6):424-427. (LI J Z, XU X R, PAN Z Q, et al. Improved adaptive spectral clustering NJW algorithm[J]. Computer Science, 2017, 44(6):424-427.) [12] 李届家,郭鹏程,韩忠华.在高维数据上的近邻传播聚类降维研究[J]. 控制工程,2016,23(9):1419-1422. (LI J J, GUO P C, HAN Z H. Research of affinity propagation clustering dimension reduction on high-dimensional data[J]. Control Engineering of China, 2016,23(9):1419-1422.) [13] 周世兵,徐振源,唐旭清.基于近邻传播算法的最佳聚类数确定方法比较研究[J].计算机科学,2011,38(2):225-228. (ZHOU S B, XU Z Y, TANG X Q. Comparative study on method for determining optimal number of clusters based on affinity propagation clustering[J]. Computer Science, 2011, 38(2):225-228.) [14] 吕宗磊.对聚类及聚类评价若干问题的研究[D].南京:南京航空航天大学,2009:10-24. (LYU Z L. The research on several issues of clustering and clustering validity indexes[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2009:10-24.) |