[1] HACKER NOON. Big challenge in deep learning[EB/OL].[2018-11-04]. https://hackernoon.com/%EF%B8%8F-big-challenge-in-deep-learning-training-data-31a88b97b282.
[2] ELIZEBETH G. AI firms lure academics[J]. Nature, 2016, 532(4):422-423.
[3] ALEXIS C. MADRIGAL. Inside Waymo's secret world for training self-driving cars[EB/OL].[2019-01-04]. https://www.yahoo.com/news/inside-waymo-apos-secret-world-152456397.html.
[4] SILVER D, SCHRITTWIESER J, SIMONYAN K, et al. Mastering the game of Go without human knowledge[J]. Nature, 2017, 550(7676):354-359.
[5] SILVER D, HUBERT T, SCHRITTWIESER J, et al. A general reinforcement learning algorithm that masters chess, shogi and Go through self-play[J]. Science, 2018, 362(6419):1140-1144.
[6] TING D S W, LIU Y, BURLINA P, et al. AI for medical imaging goes deep[J]. Nature Medicine, 2018,24(5):539-540.
[7] 李纲,徐鼎梁.AI+医疗:如何做好一只被风吹上天的猪[EB/OL].[2019-01-04]. www.sohu.com/a/222070262_487521. (LI G, XU D L. AI+ medicine:how to be a pig that is blown to the sky[EB/OL].[2019-01-04]. www.sohu.com/a/222070262_487521.)
[8] GREENSPAN H, van GINNEKEN B, SUMMERS R M. Guest editorial deep learning in medical imaging:overview and future promise of an exciting new technique[J]. IEEE Transactions on Medical Imaging, 2016, 35(5):1153-1159.
[9] MAXMEN A. AI researchers embrace bitcoin technology to share medical data[J]. Nature, 2018,555(7696):293-294.
[10] 汪红志,赵地,杨丽琴,等.基于AI+MRI的影像诊断的样本增广与批量标注方法[J].波谱学杂志,2018,35(4):447-456.(WANG H Z, ZHAO D, YANG L Q, et al. An approach for training data enrichment and batch labeling in AI+MRI aided diagnosis[J]. Chinese Journal of Magnetic Resonance, 2018, 35(4):447-456.)
[11] 王晓刚.深度学习在图像识别中的研究进展与展望[EB/OL].[2019-01-10]. http://www.360doc.com/content/15/0604/11/20625606_475573792.shtml. (WANG X G. Research progress and prospect of deep learning in image recognition[EB/OL].[2019-01-10]. http://www.360doc.com/content/15/0604/11/20625606_475573792.shtml.)
[12] DENG J, DONG W, SOCHER R, et al. ImageNet:a large-scale hierarchical image database[C]//Proceedings of the 2009 Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2009:248-255.
[13] RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet largescale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3):211-252.
[14] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 2012 International Conference on Neural Information Processing Systems. North Miami Beach, FL, USA:Curran Associates, 2012:1097-1105.
[15] CHATFIELD K, SIMONYAN K, VEDALDI A, et al. Return of the devil in the details:delving deep into convolutional nets[EB/OL].[2019-01-10]. https://arxiv.org/pdf/1405.3531.pdf.
[16] RAITOHARJU J, RIABCHENKO E, MEISSNER K, et al. Data enrichment in fine-grained classification of aquatic macroinvertebrates[C]//Proceedings of the ICPR 2nd Workshop on Computer Vision for Analysis of Underwater Imagery. Washington, DC:IEEE Computer Society, 2016:43-48.
[17] ZHANG H Y, CISSSE M, DAUPHIN Y N, et al. Mixup:beyond empirical risk minimization[EB/OL].[2019-01-10]. https://arxiv.org/pdf/1710.09412.pdf.
[18] GATYS L A, ECKER A S, BETHGE M. Image style transfer using convolutional neural networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2016:2414-2423.
[19] JOHNSON J, ALAHI A, LI F. Perceptual losses for real-time style transfer and super-resolution[C]//Proceedings of the 2016 European Conference on Computer Vision, LNCS 9906. Berlin:Springer, 2016:694-711.
[20] GATYS L A, ECKER A S, BETHGE M. A neural algorithm of artistic style[EB/OL].[2019-01-04]. https://arxiv.org/pdf/1508.06576.pdf.
[21] JACKSON P T, TAPOUR-ABARGHOUEI A, BONNER S, et al. Style augmentation:data augmentation via style randomization[EB/OL].[2019-01-04]. https://arxiv.org/pdf/1809.05375v1.pdf.
[22] RAJ B. Data augmentation:how to use deep learning when you have limited data[EB/OL].[2019-01-04]. https://www.kdnuggets.com/2018/05/data-augmentation-deep-learning-limited-data.html.
[23] ZHU J, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2017:2242-2251.
[24] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2014:2672-2680.
[25] 林懿伦,戴星原,李力,等.人工智能研究的新前线:生成式对抗网络[J].自动化学报,2018,44(5):775-792.(LIN Y L, DAI X Y, LI L, et al. The new frontier of AI research:generative adversarial networks[J]. Acta Automatica Sinica, 2018, 44(5):775-792.)
[26] ANTONIOU A, STORKEY A, EDWARDS H. Data augmentation generative adversarial networks[EB/OL].[2019-01-04]. https://arxiv.org/pdf/1711.04340.pdf.
[27] ZHONG Z, ZHENG L, KANG G, et al. Random erasing data augmentation[EB/OL].[2019-01-04]. https://arxiv.org/pdf/1708.04896.pdf.
[28] CUBUK E D, ZOPH B, MANE D, et al. AutoAugment:learning augmentation policies from data[EB/OL].[2019-01-04]. https://arxiv.org/pdf/1805.09501.pdf.
[29] Sebastian Ruder. Transfer learning-machine learning's next frontier[EB/OL].[2019-01-04]. http://ruder.io/transfer-learning/.
[30] PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transaction on Knowledge and Data Engineering, 2010, 22(10):1345-1359.
[31] YOSINSKI J, CLUNE J, BENGIO Y, et al. How transferable are features in deep neural networks?[EB/OL].[2019-01-04]. https://arxiv.org/pdf/1411.1792.pdf.
[32] TAN C, SUN F, KONG T, et al. A survey on deep transfer learning[C]//Proceedings of the 2018 International Conference on Artificial Neural Networks, LNCS 11141. Berlin:Springer:270-279.
[33] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2019-01-04]. https://arxiv.org/pdf/1409.1556.pdf.
[34] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2016:770-778.
[35] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[EB/OL].[2019-01-04]. https://arxiv.org/pdf/1512.00567.pdf.
[36] RIABCHENKO E, MEISSNER K, AHMAD I, et al. Learned vs. engineered features for fine-grained classification of aquatic macroinvertebrates[C]//Proceedings of the 23rd International Conference on Pattern Recognition. Piscataway, NJ:IEEE, 2016:2276-2281.
[37] 金连文,钟卓耀,杨钊,等.深度学习在手写汉字识别中的应用综述[J].自动化学报,2016,42(8):1125-1141.(JIN L W, ZHONG Z Y, YANG Z, et al. Applications of deep learning for handwritten Chinese character recognition:a review[J]. Acta Automatica Sinica, 2016, 42(8):1125-1141.)
[38] LeCUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
[39] SIMARD P Y, STEINKRAUS D, PLATT J C. Best practices for convolutional neural networks applied to visual document analysis[C]//Proceedings of the 7th International Conference on Document Analysis and Recognition. Washington, DC:IEEE Computer Society, 2003:958-962.
[40] YAEGER L, LYON R, WEBB B. Effective training of a neural network character classifier for word recognition[C]//Proceedings of the 9th International Conference on Neural Information Processing Systems. Denver, Colorado:[s.n.], 1997:807-816.
[41] BASTIEN F, BENGIO Y, BERGERON A, et al. Deep self-taught learning for handwritten character recognition[EB/OL].[2019-01-10]. https://arxiv.org/pdf/1009.3589v1.pdf.
[42] VARGA T, BUNKE H. Generation of synthetic training data for an HMM-based handwriting recognition system[C]//Proceedings of the 7th International Conference on Document Analysis and Recognition. Piscataway, NJ:IEEE, 2003:618-622.
[43] JADERBERG M, SIMONYAN K, VEDALDI A, et al. Synthetic data and artificial neural networks for natural scene text recognition[EB/OL].[2019-01-10]. https://arxiv.org/pdf/1406.2227.pdf.
[44] 毕佳晶,李敏,郑蕊蕊,等. 面向满文字符识别的训练数据增广方法研究[J].大连民族大学学报,2018,20(1):73-78.(BI J J,LI M, ZHENG R R, et al. Research on training data augmentation methods for Manchu character recognition[J]. Journal of Dalian Minzu University, 2018, 20(1):73-78.)
[45] JIN L, HUANG J, YIN J, et al. Deformation transformation for handwritten Chinese character shape correction[C]//Proceedings of the 3rd International Conference on Multimodal Interfaces, LNCS 1948. Berlin:Springer, 2000:450-457.
[46] CHEN G, ZHANG H, GUO J. Learning pattern generation for handwritten Chinese character using pattern transform method with cosine function[C]//Proceedings of the 2006 International Conference on Machine Learning and Cybernetics. Piscataway, NJ:IEEE, 2006:3329-3333.
[47] WONG S C, GATT A, STAMATESCU V, et al. Understanding data augmentation for classification:when to warp?[EB/OL].[2019-01-04]. https://arxiv.org/pdf/1609.08764.pdf.
[48] BAIRD H S. Document image defect models[M]//BAIRD H S, BUNKE H, YAMAMOTO K. Structured Document Image Analysis. Berlin:Springer, 1992:546-556.
[49] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE:synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16(1):321-356.
[50] DEVRIES T, TAYLOR G W. Dateset augmentation in feature space[EB/OL].[2019-01-04]. https://arxiv.org/pdf/1702.05538.pdf.
[51] GURUMURTHY S, SARVADEVABHATLA R K, BABU R V. DeLiGAN:generative adversarial networks for diverse and limited data[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2017:4941-4949.
[52] 杨明,刘强,尹忠科,等.基于轮廓追踪的字符识别特征提取[J].计算机工程与应用2007,43(20):207-209.(YANG M, LIU Q, YIN Z K, et al. Feature extraction in character recognition based on contour pursuit[J]. Computer Engineering and Applications, 2007, 43(20):207-209.)
[53] MIYAO H, MARUYAMA M. Virtual example synthesis based on PCA for off-line handwritten character recognition[C]//Proceedings of the 7th International Workshop on Document Analysis Systems, LNCS 3872. Berlin:Springer, 2006:96-105.
[54] LEUNG K C, LEUNG C H. Recognition of handwritten Chinese characters by combining regularization, Fisher's discriminant and distorted sample generation[C]//Proceedings of the 10th International Conference on Document Analysis and Recognition. Piscataway, NJ:IEEE, 2009:1026-1030.
[55] 赵元庆,吴华.多尺度特征和神经网络相融合的手写体数字识别[J].计算机科学,2013,40(8):316-318.(ZHAO Y Q, WU H. Hand written numeral recognition based on multi-scale features and neural network[J]. Computer Science, 2013, 40(8):316-318.)
[56] 张敏,韩先培,张家俊,等.中文信息处理发展报告(2016)[R].北京:中国中文信息学会,2016.(ZHANG M, HAN X P, ZHANG J J, et al. Chinese information processing development report (2016)[R]. Beijing:Chinese Information Society, 2016.)
[57] JIA R, LIANG P. Data recombination for neural semantic parsing[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics, 2016:12-22.
[58] XU Y, JIA R, MOU L, et al. Improved relation classification by deep recurrent neural networks with data augmentation[EB/OL].[2019-01-04]. https:arxiv.org/pdf/1601.03651.pdf.
[59] JIANG K, CARENINI G, NG R T. Training data enrichment for infrequent discourse relations[EB/OL].[2019-01-04]. https://www.aclweb.org/anthology/C16-1245.
[60] FADAEE M, BISAZZA A, MONZ C. Data augmentation for low-resource neural machine translation[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics, 2017:567-573.
[61] KOBAYASHI S. Contextual augmentation:data augmentation by words with paradigmatic relations[EB/OL].[2019-01-04]. https://arxiv.org/pdf/1805.06201.pdf.
[62] HOU Y, LIU Y, CHE W, et al. Sequence-to-sequence data augmentation for dialogue language understanding[EB/OL].[2019-01-04]. https://arxiv.org/pdf/1807.01554.pdf.
[63] JAEGER S, CANDEMIR S, ANTANI S, et al. Two public chest X-ray datasets for computer-aided screening of pulmonary diseases[J]. Quantitative Imaging in Medicine and Surgery, 2014, 4(6):475-477.
[64] JAEGER S, KARARGYRIS A, CANDEMIR S, et al. Automatic tuberculosis screening using chest radiographs[J]. IEEE Transactions on Medical Imaging, 2014, 33(2):233-245.
[65] CANDEMIR S, JAEGER S, PALANIAPPAN K, et al. Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration[J]. IEEE Transactions on Medical Imaging, 2014, 33(2):577-590.
[66] DEMNER-FUSHMAN D, KOHLI M D, ROSENMAN M B, et al. Preparing a collection of radiology examinations for distribution and retrieval[J]. Journal of the American Medical Informatics Association, 2016, 23(2):304-310.
[67] Open-i. Open access biomedical image search engine[DB/OL].[2019-01-04]. https://openi.nlm.nih.gov.
[68] WANG X, PENG Y, LU L, et al. Chest X-ray8:hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2017:3462-3471.
[69] RAJPURKAR P, IRVIN J, ZHU K, et al. CheXNet:radiologist-level pneumonia detection on chest X-rays with deep learning[EB/OL].[2019-01-04]. https://arxiv.org/pdf/1711.05225.pdf.
[70] RAJPURKAR P, IRVIN J, BAGUL A, et al. MURA dataset:towards radiologist-level abnormality detection in musculoskeletal radiographs[EB/OL].[2019-01-04].https://stanfordmlgroup.github.io/competitions/mura/.
[71] 程国华,陈波,季红丽. 基于3D全连接卷积神经网络的CT图像肺结节检测系统:CN201710173432.6[P/OL].2017-07-11[2019-01-04]. http://www2.drugfuture.com/cnpat/search.aspx.(CHENG G H, CHEN B, JI H L. CT image pulmonary nodule detection system based on 3D fully connected convolutional neural network:CN201710173432.6[P/OL]. 2017-07-11[2019-01-04]. http://www2.drugfuture.com/cnpat/search.aspx.)
[72] 机器之心.天池大数据竞赛第一名,上海交通大学人工智能实验室如何用AI定位肺结节[EB/OL].[2019-01-04].https://www.jiqizhixin.com/articles/2017-10-24.(Heart of Machine. How to locate pulmonary nodules with AI in artificial intelligence laboratory of Shanghai Jiaotong University which is Tianchi Big Data Competition No. 1[EB/OL].[2019-01-04]. https://www.jiqizhixin.com/articles/2017-10-24.)
[73] FRID-ADAR M, KLANG E, AMITAI M, et al. Synthetic data augmentation using GAN for improved liver lesion classification[C]//Proceedings of the IEEE 15th International Symposium on Biomedical Imaging. Piscataway, NJ:IEEE, 2018:289-293.
[74] NIE D, TRULLO R, LIANG J, et al. Medical image synthesis with context-aware generative adversarial networks[C]//Proceedings of the 2017 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 10435. Berlin:Springer, 2017:417-425.
[75] 林伟铭,高钦泉,杜民.卷积神经网络诊断阿尔兹海默症的方法[J].计算机应用,2017, 32(12):3504-3508.(LIN W M, GAO Q Q, DU M. Convolutional neural network based method for diagnosis of Alzheimer's disease[J]. Journal of Computer Applications, 2017, 32(12):3504-3508.)
[76] THYREAU B, SATO K, FUKUDA H, et al. Segmentation of the hippocampus by transferring algorithmic knowledge for large cohort processing[J]. Medical Image Analysis, 2018,43:214-228.
[77] DONG H, YANG G, LIU F, et al. Automatic brain tumor detection and segmentation using U-net based fully convolutional networks[C]//Proceedings of the 2017 Annual Conference on Medical Image Understanding and Analysis, CCIS 723. Berlin:Springer, 2017:506-517.
[78] RONNEBERGER O, FISCHER P, BROX T. U-net:convolutional networks for biomedical image segmentation[C]//Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Berlin:Springer, 2015:234-241.
[79] MENZE B H, JAKAB A, BAUER S, et al. The multimodal brain tumor image segmentation benchmark (BRATS)[J]. IEEE Transactions on Medical Imaging, 2015, 34(10):1993-2024.
[80] SHIN H, TENEHOLTZ N A, ROGERS J K, et al. Medical image synthesis for data augmentation and anonymization using generative adversarial networks[EB/OL].[2019-01-04]. https://arxiv.org/pdf/1807.10225.pdf.
[81] VASCONCELOS C N, VASCONCELOS B N. Increasing deep learning melanoma classification by classical and expert knowledge based image transforms[EB/OL].[2019-01-04]. https://arxiv.org/pdf/1702.07025v1.pdf.
[82] CIRESAN D C, GIUSTI A, GAMBARDELLA L M, et al. Mitosis detection in breast cancer histology images with deep neural networks[C]//Proceedings of the 2013 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 8150. Berlin:Springer, 2013:411-418. |