Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (5): 1355-1363.DOI: 10.11772/j.issn.1001-9081.2024020254
Special Issue: 进化计算专题(2024年第5期“进化计算专题”导读,全文已上线)
• Special issue on evolutionary calculation • Previous Articles Next Articles
Wanting ZHANG, Wenli DU(), Wei DU
Received:
2024-03-11
Revised:
2024-04-02
Accepted:
2024-04-03
Online:
2024-04-26
Published:
2024-05-10
Contact:
Wenli DU
About author:
ZHANG Wanting, born in 1998, Ph. D. candidate. Her research interests include large-scale scheduling, evolutionary computation.Supported by:
通讯作者:
杜文莉
作者简介:
张莞婷(1998—),女,陕西汉中人,博士研究生,主要研究方向:大规模调度、进化计算基金资助:
CLC Number:
Wanting ZHANG, Wenli DU, Wei DU. Multi-timescale cooperative evolutionary algorithm for large-scale crude oil scheduling[J]. Journal of Computer Applications, 2024, 44(5): 1355-1363.
张莞婷, 杜文莉, 堵威. 基于多时间尺度协同的大规模原油调度进化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1355-1363.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024020254
符号 | 含义 | |
---|---|---|
下标 与 集合 | 油轮, | |
油罐(日调度中表示实体罐,旬调度中表示 虚拟罐), | ||
原油油种, | ||
原油属性(硫含量、酸值、密度), | ||
常减压装置, | ||
渣油种类, | ||
蜡油种类(低硫蜡油、含硫蜡油), | ||
中间产品种类(石脑油、煤油、柴油、蜡油、 洗涤油和渣油), | ||
离散时间段, | ||
允许生产渣油 | ||
参数 | 油轮到达时间(单位: d) | |
油轮每天的最大卸油量 | ||
常减压装置 | ||
蜡油 | ||
渣油 | ||
常减压装置 | ||
原油 | ||
常减压装置 | ||
原油(虚拟)罐 | ||
原油(虚拟)罐 | ||
蜡油 | ||
渣油 | ||
原油 | ||
常减压装置 下限 | ||
二元 变量 | 若油轮 则为1,否则为0 | |
若原油(虚拟)罐 | ||
若常减压装置 | ||
连续 变量 | 取值范围[0,1],若原油(虚拟)罐 装置 之间发生变化则为1,否则为0 | |
取值范围[0,1],若常减压装置 在时间段 否则为0 | ||
油轮 | ||
原油(虚拟)罐 | ||
油轮 原油 | ||
原油(虚拟)罐 | ||
渣油 | ||
蜡油 | ||
原油(虚拟)罐 供应原油 | ||
常减压装置 | ||
常减压装置 | ||
原油(虚拟)罐 供应的总量 | ||
常减压装置 质量 |
Tab. 1 Description of symbols
符号 | 含义 | |
---|---|---|
下标 与 集合 | 油轮, | |
油罐(日调度中表示实体罐,旬调度中表示 虚拟罐), | ||
原油油种, | ||
原油属性(硫含量、酸值、密度), | ||
常减压装置, | ||
渣油种类, | ||
蜡油种类(低硫蜡油、含硫蜡油), | ||
中间产品种类(石脑油、煤油、柴油、蜡油、 洗涤油和渣油), | ||
离散时间段, | ||
允许生产渣油 | ||
参数 | 油轮到达时间(单位: d) | |
油轮每天的最大卸油量 | ||
常减压装置 | ||
蜡油 | ||
渣油 | ||
常减压装置 | ||
原油 | ||
常减压装置 | ||
原油(虚拟)罐 | ||
原油(虚拟)罐 | ||
蜡油 | ||
渣油 | ||
原油 | ||
常减压装置 下限 | ||
二元 变量 | 若油轮 则为1,否则为0 | |
若原油(虚拟)罐 | ||
若常减压装置 | ||
连续 变量 | 取值范围[0,1],若原油(虚拟)罐 装置 之间发生变化则为1,否则为0 | |
取值范围[0,1],若常减压装置 在时间段 否则为0 | ||
油轮 | ||
原油(虚拟)罐 | ||
油轮 原油 | ||
原油(虚拟)罐 | ||
渣油 | ||
蜡油 | ||
原油(虚拟)罐 供应原油 | ||
常减压装置 | ||
常减压装置 | ||
原油(虚拟)罐 供应的总量 | ||
常减压装置 质量 |
算例 序号 | 油轮数 油种数 | 变量总数 | 二元变量数 | 约束总数 |
---|---|---|---|---|
1 | 15 976 | 5 430 | 45 468 | |
2 | 19 487 | 8 232 | 54 854 | |
3 | 22 699 | 12 815 | 65 471 |
Tab. 2 Problems scale
算例 序号 | 油轮数 油种数 | 变量总数 | 二元变量数 | 约束总数 |
---|---|---|---|---|
1 | 15 976 | 5 430 | 45 468 | |
2 | 19 487 | 8 232 | 54 854 | |
3 | 22 699 | 12 815 | 65 471 |
算法 | 算例1 | 算例2 | 算例3 | |||
---|---|---|---|---|---|---|
均值 | 可行率/% | 均值 | 可行率/% | 均值 | 可行率/% | |
CSO | 12.85±1.50 | 75 | 14.70±1.72 | 55 | 19.20±2.17 | 30 |
SaDE-MMTS | 12.90±1.52 | 70 | 17.60±2.33 | 40 | 23.45±2.46 | 20 |
MMES | 12.25±1.89 | 75 | 14.65±1.69 | 45 | 20.60±1.79 | 40 |
MTCEA | 8.40±1.47 | 100 | 9.75±1.74 | 95 | 13.05±1.67 | 80 |
Tab. 3 Performances indicator results obtained by MTCEA and three LSGO algorithms
算法 | 算例1 | 算例2 | 算例3 | |||
---|---|---|---|---|---|---|
均值 | 可行率/% | 均值 | 可行率/% | 均值 | 可行率/% | |
CSO | 12.85±1.50 | 75 | 14.70±1.72 | 55 | 19.20±2.17 | 30 |
SaDE-MMTS | 12.90±1.52 | 70 | 17.60±2.33 | 40 | 23.45±2.46 | 20 |
MMES | 12.25±1.89 | 75 | 14.65±1.69 | 45 | 20.60±1.79 | 40 |
MTCEA | 8.40±1.47 | 100 | 9.75±1.74 | 95 | 13.05±1.67 | 80 |
算法 | 算例1 | 算例2 | 算例3 | |||
---|---|---|---|---|---|---|
均值 | 可行率/% | 均值 | 可行率/% | 均值 | 可行率/% | |
MTCEA-ANTIGONE | 10.60±1.98 | 50 | 17.90±1.74 | 35 | 20.65±1.95 | 15 |
MTCEA-SCIP | 10.70±1.84 | 40 | 25 | 20.55±2.01 | 15 | |
MTCEA-SHOT | 10.90±1.80 | 55 | 17.60±1.64 | 30 | 20.25±1.97 | 20 |
MTCEA | 8.40±1.47 | 100 | 9.75±1.74 | 95 | 13.05±1.67 | 80 |
Tab. 4 Performances indicator results obtained by MTCEA and three variant methods with MINLP solvers
算法 | 算例1 | 算例2 | 算例3 | |||
---|---|---|---|---|---|---|
均值 | 可行率/% | 均值 | 可行率/% | 均值 | 可行率/% | |
MTCEA-ANTIGONE | 10.60±1.98 | 50 | 17.90±1.74 | 35 | 20.65±1.95 | 15 |
MTCEA-SCIP | 10.70±1.84 | 40 | 25 | 20.55±2.01 | 15 | |
MTCEA-SHOT | 10.90±1.80 | 55 | 17.60±1.64 | 30 | 20.25±1.97 | 20 |
MTCEA | 8.40±1.47 | 100 | 9.75±1.74 | 95 | 13.05±1.67 | 80 |
1 | 丁进良,杨翠娥,陈远东,等.复杂工业过程智能优化决策系统的现状与展望[J].自动化学报,2018,44(11):1931-1943. 10.16383/j.aas.2018.c180550 |
DING J L, YANG C E, CHEN Y D, et al. Research progress and prospects of intelligent optimization decision making in complex industrial process[J]. Acta Automatica Sinica, 2018, 44(11): 1931-1943. 10.16383/j.aas.2018.c180550 | |
2 | 陈远东,丁进良.炼油生产调度研究现状与挑战[J].控制与决策,2022,37(9):2177-2188. |
CHEN Y D, DING J L. State-of-arts and challenges on production scheduling of refinery[J]. Control and Decision, 2022, 37(9): 2177-2188. | |
3 | 郑万鹏,高小永,朱桂瑶,等.原油作业过程优化的研究进展[J].化工学报,2021,72(11):5481-5501. 10.11949/0438-1157.20210850 |
ZHENG W P, GAO X Y, ZHU G Y, et al. Research progress on crude oil operation optimization[J]. CIESC Journal, 2021, 72(11): 5481-5501. 10.11949/0438-1157.20210850 | |
4 | 张闻强,邢征,杨卫东.基于多区域采样策略的混合粒子群优化求解多目标柔性作业车间调度问题[J].计算机应用,2021,41(8):2249-2257. 10.11772/j.issn.1001-9081.2020101675 |
ZHANG W Q, XING Z, YANG W D. Hybrid particle swarm optimization with multi-region sampling strategy to solve multi-objective flexible job-shop scheduling problem[J]. Journal of Computer Applications, 2021, 41(8): 2249-2257. 10.11772/j.issn.1001-9081.2020101675 | |
5 | 闫红超,汤伟,姚斌.求解置换流水车间调度问题的混合鸟群算法[J].计算机应用,2022,42(9):2952-2959. 10.11772/j.issn.1001-9081.2021091650 |
YAN H C, TANG W, YAO B. Hybrid bird swarm algorithm for solving permutation flowshop scheduling problem[J]. Journal of Computer Applications, 2022, 42(9): 2952-2959. 10.11772/j.issn.1001-9081.2021091650 | |
6 | DU W, ZHONG W M, TANG Y, et al. High-dimensional robust multi-objective optimization for order scheduling: a decision variable classification approach[J]. IEEE Transactions on Industrial Informatics, 2018, 15(1): 293-304. 10.1109/tii.2018.2836189 |
7 | LI J, LI W K, KARIMI I, et al. Improving the robustness and efficiency of crude scheduling algorithms[J]. AIChE Journal, 2007, 53(10): 2659-2680. 10.1002/aic.11280 |
8 | LI W, HUI C W, HUA B, et al. Scheduling crude oil unloading, storage, and processing[J]. Industrial & Engineering Chemistry Research, 2002, 41(26): 6723-6734. 10.1021/ie020130b |
9 | 陈旋.离散和连续时间模型在原油调度问题中的应用研究[D].北京: 清华大学,2012:83-108. 10.1016/j.compchemeng.2012.05.009 |
CHEN X. A study on the application of discrete and continuous time models to the crude oil scheduling problem[D]. Beijing: Tsinghua University,2012:83-108. 10.1016/j.compchemeng.2012.05.009 | |
10 | 周智菊,周祥,周涵.基于滚动时域分解策略的原油混输调度模型[J].石油学报(石油加工),2021,37(2):320-329. |
ZHOU Z J, ZHOU X, ZHOU H. Scheduling model based on rolling-horizon algorithm for crude oil transportation[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021, 37(2): 320-329. | |
11 | PANDA D, RAMTEKE M. Reactive scheduling of crude oil using structure adapted genetic algorithm under multiple uncertainties[J]. Computers & Chemical Engineering, 2018, 116: 333-351. 10.1016/j.compchemeng.2018.04.005 |
12 | HOU Y, WU N Q, LI Z. A genetic algorithm approach to short-term scheduling of crude oil operations in refinery[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2016, 11 (5): 593-603. 10.1002/tee.22277 |
13 | WU N, CHU F, CHU C, et al. Short-term schedulability analysis of multiple distiller crude oil operations in refinery with oil residency time constraint[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2008, 39(1): 1-16. 10.1109/tsmcc.2008.2001709 |
14 | HOU Y, WU N, ZHOU M, et al. Pareto-optimization for scheduling of crude oil operations in refinery via genetic algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2015, 47(3): 517-530. |
15 | DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. 10.1109/4235.996017 |
16 | LIU Z-Z, WANG Y. Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(5): 870-884. 10.1109/tevc.2019.2894743 |
17 | CHENG R, JIN Y. A competitive swarm optimizer for large scale optimization[J]. IEEE Transactions on Cybernetics, 2014, 45(2): 191-204. 10.1109/tcyb.2014.2322602 |
18 | ZHAO S-Z, SUGANTHAN P N, DAS S. Self-adaptive differential evolution with multi-trajectory search for large-scale optimization[J]. Soft Computing, 2011, 15: 2175-2185. 10.1007/s00500-010-0645-4 |
19 | HE X, ZHENG Z, ZHOU Y. MMES: mixture model-based evolution strategy for large-scale optimization[J]. IEEE Transactions on Evolutionary Computation, 2020, 25(2): 320-333. 10.1109/tevc.2020.3034769 |
20 | MISENER R, FLOUDAS C A. ANTIGONE: algorithms for continuous/integer global optimization of nonlinear equations[J]. Journal of Global Optimization, 2014, 59: 503-526. 10.1007/s10898-014-0166-2 |
21 | ACHTERBERG T. SCIP: solving constraint integer programs[J]. Mathematical Programming Computation, 2009, 1: 1-41. 10.1007/s12532-008-0001-1 |
22 | LUNDELL A, KRONQVIST J, WESTERLUND T. The supporting hyperplane optimization toolkit for convex MINLP[J]. Journal of Global Optimization, 2022, 84: 1-41. 10.1007/s10898-022-01128-0 |
23 | HOOKER J N. Planning and scheduling by logic-based Benders decomposition[J]. Operations Research, 2007, 55(3): 588-602. 10.1287/opre.1060.0371 |
24 | KRONQVIST J, LUNDELL A, WESTERLUND T. The extended supporting hyperplane algorithm for convex mixed-integer nonlinear programming[J]. Journal of Global Optimization, 2016, 64: 249-272. 10.1007/s10898-015-0322-3 |
25 | MUTS P, NOWAK I, HENDRIX E M T. The decomposition-based outer approximation algorithm for convex mixed-integer nonlinear programming[J]. Journal of Global Optimization, 2020, 77: 75-96. 10.1007/s10898-020-00888-x |
[1] | Ye TIAN, Jinjin CHEN, Xingyi ZHANG. Hybrid optimizer combining evolutionary computation and gradient descent for constrained multi-objective optimization [J]. Journal of Computer Applications, 2024, 44(5): 1386-1392. |
[2] | Kaiwen ZHAO, Peng WANG, Xiangrong TONG. Two-stage search-based constrained evolutionary multitasking optimization algorithm [J]. Journal of Computer Applications, 2024, 44(5): 1415-1422. |
[3] | Maojiang TIAN, Mingke CHEN, Wei DU, Wenli DU. Two-stage differential grouping method for large-scale overlapping problems [J]. Journal of Computer Applications, 2024, 44(5): 1348-1354. |
[4] | Jiawei ZHAO, Xuefeng CHEN, Liang FENG, Yaqing HOU, Zexuan ZHU, Yew‑Soon Ong. Review of evolutionary multitasking from the perspective of optimization scenarios [J]. Journal of Computer Applications, 2024, 44(5): 1325-1337. |
[5] | Jie HUANG, Ruizi WU, Junli LI. Efficient adaptive robustness optimization algorithm for complex networks [J]. Journal of Computer Applications, 2024, 44(11): 3530-3539. |
[6] | Maozu GUO, Yazhe ZHANG, Lingling ZHAO. Electric vehicle charging station siting method based on spatial semantics and individual activities [J]. Journal of Computer Applications, 2023, 43(9): 2819-2827. |
[7] | Saijuan XU, Zhenyu PEI, Jiawei LIN, Genggeng LIU. Constrained multi-objective evolutionary algorithm based on multi-stage search [J]. Journal of Computer Applications, 2023, 43(8): 2345-2351. |
[8] | Erchao LI, Yanli CHENG. Dynamic multi-objective optimization algorithm based on weight vector clustering [J]. Journal of Computer Applications, 2023, 43(7): 2226-2236. |
[9] | Zhihui GAO, Meng HAN, Shujuan LIU, Ang LI, Dongliang MU. Survey of high utility itemset mining methods based on intelligent optimization algorithm [J]. Journal of Computer Applications, 2023, 43(6): 1676-1686. |
[10] | Bin WANG, Tian XIANG, Yidong LYU, Xiaofan WANG. Adaptive multi-scale feature channel grouping optimization algorithm based on NSGA‑Ⅱ [J]. Journal of Computer Applications, 2023, 43(5): 1401-1408. |
[11] | Erchao LI, Shenghui ZHANG. Dynamic multi-objective optimization algorithm based on adaptive prediction of new evaluation index [J]. Journal of Computer Applications, 2023, 43(10): 3178-3187. |
[12] | Kuineng CHEN, Xiaofang YUAN. Multi-objective hybrid evolutionary algorithm for solving open-shop scheduling problem with controllable processing time [J]. Journal of Computer Applications, 2022, 42(8): 2617-2627. |
[13] | Yu SHEN, Hecheng LI, Lijuan CHEN. Evolutionary algorithm based on approximation technique for solving bilevel programming problems [J]. Journal of Computer Applications, 2022, 42(8): 2511-2518. |
[14] | Feifan SHI, Xuhua SHI. Adaptive reference vector based constrained multi-objective evolutionary algorithm [J]. Journal of Computer Applications, 2022, 42(2): 542-549. |
[15] | Wei LI, Yaochi FAN, Qiaoyong JIANG, Lei WANG, Qingzheng XU. Variable convolutional autoencoder method based on teaching-learning-based optimization for medical image classification [J]. Journal of Computer Applications, 2022, 42(2): 592-598. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||