[1] ILIADIS M, WANG H, MOLINA R, et al. Robust and low-rank representation for fast face identification with occlusions[J]. IEEE Transactions on Image Processing, 2017,26(5):2203-2218. [2] WEN Y, LIU W, YANG M, et al. Structured occlusion coding for robust face recognition[J]. Neurocomputing, 2016, 178(C):11-24. [3] HE R, ZHENG W, TAN T, et al. Half-quadratic-based iterative minimization for robust sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(2):261-275. [4] ZHAO F, FENG J, ZHAO J, et al. Robust LSTM-autoencoders for face de-occlusion in the wild[J]. IEEE Transactions on Image Processing,2016,27(2):778-790. [5] MOHAMMAD O A, BOUBAKEUR B. Occlusion handling based on sub-blobbing in automated video surveillance system[C]//Proceedings of the 4th International Conference on Computer Science and Software Engineering. New York:ACM, 2011:139-143. [6] CUCCHIARA R, GRANA C, TARDINI G. Track-based and object-based occlusion for people tracking refinement in indoor surveillance[C]//Proceedings of the ACM 2nd International Workshop on Video Surveillance & Sensor Networks. New York:ACM, 2004:81-87. [7] ONG F, LUSTIG M. Beyond low rank + sparse:multiscale low rank matrix decomposition[J]. IEEE Journal of Selected Topics in Signal Processing, 2016, 10(4):672-687. [8] OROUGHI H, SHAKERI M, RAY N, et al. Face recognition using multi-modal low-rank dictionary learning[C]//Proceedings of the 2017 IEEE International Conference on Image Processing. Piscataway:IEEE, 2017:1081-1086. [9] 唐娴,黄军伟.低秩鲁棒性主成分分析的遮挡人脸识别[J].南京理工大学学报,2017,41(4):460-465.(TANG W, HUANG J W. Occlusion face recognition based on low rank robust principal component analysis[J]. Journal of Nanjing University of Science and Technology, 2017, 41(4):460-465.) [10] 李晋江, 张彩明, 范辉, 等. 基于分形的图像修复算法[J].电子学报,2010,38(10):2430-2435.(LI J J, ZHANG C M, FAN H, et al. Fractal-based image restoration algorithm[J].Acta Electronica Sinica, 2010, 38(10):2430-2435.) [11] DING Z M, SUH S, HAN J, et al. Discriminative low-rank metric learning for face recognition[C]//Proceedings of the 201511th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition. Piscataway:IEEE, 2015:1-6. [12] DING X, LIU X, XU L. An optimization method of extreme learning machine for regression[C]//Proceedings of the 31st Annual ACM Symposium on Applied Computing. New York:ACM, 2016:891-893. [13] YANG M, ZHANG L, SHIU S, et al. Gabor feature based robust representation and classification for face recognition with Gabor occlusion dictionary[J]. Pattern Recognition, 2014, 46(7):1559-1572. [14] HE R, ZHENG W, HU B, et al. Two-stage nonnegative sparse representation for large-scale face recognition[J]. IEEE Transactions on Neural Networks and Learning Systems,2013, 24(1):35-46. [15] 朱明旱,李树涛,叶华.稀疏表示分类中遮挡字典构造方法的改进[J].计算机辅助设计与图形学报,2014,26(11):2064-2078.(ZHU M H, LI S T, YE H. Improvement of the construction method of occlusion dictionary in sparse representation classification[J].Journal of Computer-Aided Design & Computer Graphics, 2014, 26(11):2064-2078.) [16] SING Y, CHENG Y. Noise-resistant network:a deep-learning method for face recognition under noise[J]. EURASIP Journal on Image and Video Processing, 2017, 2017:Article number 43. [17] ZHOU Y, BARNER K. Locality constrained dictionary learning for nonlinear dimensionality reduction[J]. IEEE Signal Processing Letters, 2013, 20(4):335-338. [18] ZHOU Z, WAGNER A, MOBAHI H, et al. Face recognition with contiguous occlusion using Markov random fields[C]//Proceedings of the 2009 IEEE 12th International Conference on Computer Vision. Piscataway:IEEE, 2009:1050-1057. [19] 刘丽娜,马世伟,温加睿.基于局部约束字典学习的数据降维和重构方法[J].仪表仪器学报, 2016, 37(1):99-108.(LIU L N, MA S W, WEN J R. Data dimension reduction and reconstruction method based on local constraint dictionary learning[J]. Journal of Instrument and Instrument, 2016, 37(1):99-108.) [20] SASTRAWAHA S, HORATA P. Ensemble extreme learning machine for multi-instance learning[J]//Proceedings of the 9th International Conference on Machine Learning and Computing. New York:ACM, 2017:56-60. [21] 彭双. 神经网络隐层节点的稀疏化[D]. 大连:大连理工大学,2017:1-48.(PENG S. Sparseization of hidden nodes in neural networks[D]. Dalian:Dalian University of Technology, 2017:1-48.) [22] PATHAK D, DONAHUE P, DARRELL T, et al. Context encoders:feature learning by inpainting[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:2536-2544. [23] YEH R, CHEN C, LIMT Y, et al. Semantic image inpainting with perceptual and contextual losses[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:6882-6890. |