Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (7): 2030-2036.DOI: 10.11772/j.issn.1001-9081.2021050880
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Huaiqing HE, Jianqing YAN(), Kanghua HUI
Received:
2021-05-27
Revised:
2021-09-03
Accepted:
2021-09-15
Online:
2021-09-03
Published:
2022-07-10
Contact:
Jianqing YAN
About author:
HE Huaiqing, born in 1969, Ph. D., professor. Her research interests include graphics, image and visual analysis.Supported by:
通讯作者:
闫建青
作者简介:
贺怀清(1969—),女,吉林白山人,教授,博士,CCF会员,主要研究方向:图形、图像、可视化分析基金资助:
CLC Number:
Huaiqing HE, Jianqing YAN, Kanghua HUI. Lightweight face recognition method based on deep residual network[J]. Journal of Computer Applications, 2022, 42(7): 2030-2036.
贺怀清, 闫建青, 惠康华. 基于深度残差网络的轻量级人脸识别方法[J]. 《计算机应用》唯一官方网站, 2022, 42(7): 2030-2036.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021050880
层类型 | 输入尺寸 | 输出尺寸 |
---|---|---|
Conv1 | 3×112×112 | 64×112×112 |
Block1 | 64×112×112 | 64×56×56 |
Block2 | 64×56×56 | 128×28×28 |
Block3 | 128×28×28 | 256×14×14 |
Block4 | 256×14×14 | 512×7×7 |
FC | 512×7×7 | 1×25 088 |
Tab. 1 Each layer structure of lightweight face recognition residual network
层类型 | 输入尺寸 | 输出尺寸 |
---|---|---|
Conv1 | 3×112×112 | 64×112×112 |
Block1 | 64×112×112 | 64×56×56 |
Block2 | 64×56×56 | 128×28×28 |
Block3 | 128×28×28 | 256×14×14 |
Block4 | 256×14×14 | 512×7×7 |
FC | 512×7×7 | 1×25 088 |
模型 | 数据集精度/% | 单张识别 时间/ms | 空间开销/MB | |
---|---|---|---|---|
LFW | VGG-Face | |||
ResNet101 | 99.62 | 96.35 | 30 | 870.22 |
ResNet50 | 99.46 | 95.95 | 23 | 369.55 |
DSLR | 98.82 | 95.83 | 16 | 131.13 |
Tab. 2 Experimental results of teacher/student network on different datasets
模型 | 数据集精度/% | 单张识别 时间/ms | 空间开销/MB | |
---|---|---|---|---|
LFW | VGG-Face | |||
ResNet101 | 99.62 | 96.35 | 30 | 870.22 |
ResNet50 | 99.46 | 95.95 | 23 | 369.55 |
DSLR | 98.82 | 95.83 | 16 | 131.13 |
方法 | 数据集精度/% | 单张识别 时间/ms | |||
---|---|---|---|---|---|
LFW | VGG-Face | AgeDB | CFP-FP | ||
MobiFace | 98.60 | 95.70 | 92.32 | 92.83 | 15 |
HRNet | 99.40 | 95.98 | 93.10 | 93.65 | 20 |
GhostNet | 99.17 | 95.81 | 91.97 | 92.67 | 18 |
DSLR | 98.82 | 95.83 | 92.43 | 93.24 | 16 |
Tab. 3 Experimental results comparison of multiple methods on different datasets
方法 | 数据集精度/% | 单张识别 时间/ms | |||
---|---|---|---|---|---|
LFW | VGG-Face | AgeDB | CFP-FP | ||
MobiFace | 98.60 | 95.70 | 92.32 | 92.83 | 15 |
HRNet | 99.40 | 95.98 | 93.10 | 93.65 | 20 |
GhostNet | 99.17 | 95.81 | 91.97 | 92.67 | 18 |
DSLR | 98.82 | 95.83 | 92.43 | 93.24 | 16 |
方法 | 数据集精度/% | 单张识别 时间/ms | |
---|---|---|---|
LFW | VGG-Face | ||
IR | 98.85 | 95.91 | 18 |
IR+DSC | 98.79 | 95.74 | 16 |
IR+DSC+SE | 98.82 | 95.83 | 16 |
Tab. 4 Experimental results comparison of adding depthwise separable convolution to DSLR on different datasets
方法 | 数据集精度/% | 单张识别 时间/ms | |
---|---|---|---|
LFW | VGG-Face | ||
IR | 98.85 | 95.91 | 18 |
IR+DSC | 98.79 | 95.74 | 16 |
IR+DSC+SE | 98.82 | 95.83 | 16 |
1 | 李东博,黄铝文. 重加权稀疏主成分分析算法及其在人脸识别中的应用[J]. 计算机应用, 2020, 40(3):717-722. |
LI D B, HUANG L W. Reweighted sparse principal component analysis algorithm and its application in face recognition[J]. Journal of Computer Applications, 2020, 40(3): 717-722. | |
2 | 徐竟泽,吴作宏,徐岩,等. 融合PCA、LDA和SVM算法的人脸识别[J]. 计算机工程与应用, 2019, 55(18):34-37. |
XU J Z, WU Z H, XU Y, et al. Face recognition based on PCA, LDA and SVM algorithms[J]. Computer Engineering and Applications, 2019, 55(18): 34-37. | |
3 | 丁莲静,刘光帅,李旭瑞,等. 加权信息熵与增强局部二值模式结合的人脸识别[J]. 计算机应用, 2019, 39(8):2210-2216. 10.11772/j.issn.1001-9081.2019010181 |
DING L J, LIU G S, LI X R, et al. Face recognition combining weighted information entropy with enhanced local binary pattern[J]. Journal of Computer Applications, 2019, 39(8): 2210-2216. 10.11772/j.issn.1001-9081.2019010181 | |
4 | SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 815-823. 10.1109/cvpr.2015.7298682 |
5 | PARKHI O M, VEDALDI A, ZISSERMAN A. Deep face recognition[C]// Proceedings of the 2015 British Machine Vision Conference. Durham: BMVA Press, 2015: No.41. 10.5244/c.29.41 |
6 | HU J, SHEN L, SUN G, Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. 10.1109/cvpr.2018.00745 |
7 | LIU W Y, WEN Y D, YU Z D, et al. SphereFace: deep hypersphere embedding for face recognition[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6738-6746. 10.1109/cvpr.2017.713 |
8 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
9 | WANG H, WANG Y T, ZHOU Z, et al. CosFace: large margin cosine loss for deep face recognition[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 5265-5274. 10.1109/cvpr.2018.00552 |
10 | DENG J K, GUO J, XUE N N, et al. ArcFace: additive angular margin loss for deep face recognition[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 4685-4694. 10.1109/cvpr.2019.00482 |
11 | HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017-04-17) [2021-03-12].. |
12 | ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6848-6856. 10.1109/cvpr.2018.00716 |
13 | WANG M J, LIU R J, ABE N, et al. Discover the effective strategy for face recognition model compression by improved knowledge distillation[C]// Proceedings of the 25th IEEE International Conference on Image Processing. Piscataway: IEEE, 2018: 2416-2420. 10.1109/icip.2018.8451808 |
14 | YAN M J, ZHAO M G, XU Z N, et al. VarGFaceNet: an efficient variable group convolutional neural network for lightweight face recognition[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop. Piscataway: IEEE, 2019: 2647-2654. 10.1109/iccvw.2019.00323 |
15 | GE S M, ZHAO S W, LI C Y, et al. Low-resolution face recognition in the wild via selective knowledge distillation[J]. IEEE Transactions on Image Processing, 2019, 28(4): 2051-2062. 10.1109/tip.2018.2883743 |
16 | HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. (2015-03-09) [2021-03-12].. |
17 | HAN S, POOL J, TRAN J, et al. Learning both weights and connections for efficient neural networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015: 1135-1143. |
18 | WU J X, LENG C, WANG Y H, et al. Quantized convolutional neural networks for mobile devices[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016:4820-4828. 10.1109/cvpr.2016.521 |
19 | YI D, LEI Z, LIAO S C, et al. Learning face representation from scratch[EB/OL]. (2014-11-28) [2021-03-12].. |
20 | HUANG G B, RAMESH M, BERG T, et al. Labeled faces in the wild: a database for studying face recognition in unconstrained environments[EB/OL]. [2021-03-12].. |
21 | MOSCHOGLOU S, PAPAIOANNOU A, SAGONAS C, et al. AgeDB: the first manually collected, in-the-wild age database[C]// Proceeding of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2017: 1997-2005. 10.1109/cvprw.2017.250 |
22 | SENGUPTA S, CHEN J C, CASTILLO C, et al. Frontal to profile face verification in the wild[C]// Proceeding of the 2016 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2016: 1-9. 10.1109/wacv.2016.7477558 |
23 | ZHOU E J, CAO Z M, SUN J. GridFace: face rectification via learning local homography transformations[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11220. Cham: Springer, 2018: 3-20. |
24 | DUONG C N, QUACH K G, JALATA I, et al. MobiFace: a lightweight deep learning face recognition on mobile devices[C]// Proceedings of the IEEE 10th International Conference on Biometrics Theory, Applications and Systems. Piscataway: IEEE, 2019: 1-6. 10.1109/btas46853.2019.9185981 |
25 | SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5686-5696. 10.1109/cvpr.2019.00584 |
26 | HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1577-1586. 10.1109/cvpr42600.2020.00165 |
[1] | Yanjun LI, Yaodong GE, Qi WANG, Weiguo ZHANG, Chen LIU. Improved KLEIN algorithm and its quantum analysis [J]. Journal of Computer Applications, 2024, 44(9): 2810-2817. |
[2] | Yongjin ZHANG, Jian XU, Mingxing ZHANG. Lightweight algorithm for impurity detection in raw cotton based on improved YOLOv7 [J]. Journal of Computer Applications, 2024, 44(7): 2271-2278. |
[3] | Xiaohui CHENG, Yuntian HUANG, Ruifang ZHANG. Lightweight infrared road scene detection model based on multiscale and weighted coordinate attention [J]. Journal of Computer Applications, 2024, 44(6): 1927-1934. |
[4] | Xiaogang SONG, Dongdong ZHANG, Pengfei ZHANG, Li LIANG, Xinhong HEI. Real-time object detection algorithm for complex construction environments [J]. Journal of Computer Applications, 2024, 44(5): 1605-1612. |
[5] | Huantong GENG, Zhenyu LIU, Jun JIANG, Zichen FAN, Jiaxing LI. Embedded road crack detection algorithm based on improved YOLOv8 [J]. Journal of Computer Applications, 2024, 44(5): 1613-1618. |
[6] | Jun FENG, Jiankang BI, Yiru HUO, Jiakuan LI. PIPNet: lightweight asphalt pavement crack image segmentation network [J]. Journal of Computer Applications, 2024, 44(5): 1520-1526. |
[7] | Bin XIAO, Yun GAN, Min WANG, Xingpeng ZHANG, Zhaoxing WANG. Network abnormal traffic detection based on port attention and convolutional block attention module [J]. Journal of Computer Applications, 2024, 44(4): 1027-1034. |
[8] | Xue LI, Guangle YAO, Honghui WANG, Jun LI, Haoran ZHOU, Shaoze YE. Remote sensing image classification based on sample incremental learning [J]. Journal of Computer Applications, 2024, 44(3): 732-736. |
[9] | Zijie HUANG, Yang OU, Degang JIANG, Cailing GUO, Bailin LI. Lightweight deep learning algorithm for weld seam surface quality detection of traction seat [J]. Journal of Computer Applications, 2024, 44(3): 983-988. |
[10] | Chenghanyu ZHANG, Yuzhe LIN, Chengke TAN, Junfan WANG, Yeting GU, Zhekang DONG, Mingyu GAO. New dish recognition network based on lightweight YOLOv5 [J]. Journal of Computer Applications, 2024, 44(2): 638-644. |
[11] | Yong XIANG, Yanjun LI, Dingyun HUANG, Yu CHEN, Huiqin XIE. Differential and linear characteristic analysis of full-round Shadow algorithm [J]. Journal of Computer Applications, 2024, 44(12): 3839-3843. |
[12] | Ziqian CHEN, Kedi NIU, Zhongyuan YAO, Xueming SI. Review of blockchain lightweight technology applied to internet of things [J]. Journal of Computer Applications, 2024, 44(12): 3688-3698. |
[13] | Xin ZHAO, Xinjie LI, Jian XU, Buyun LIU, Xiang BI. Parallel medical image registration model based on convolutional neural network and Transformer [J]. Journal of Computer Applications, 2024, 44(12): 3915-3921. |
[14] | Yanran SHEN, Xin WEN, Jinhao ZHANG, Shuai ZHANG, Rui CAO, Baolu GAO. fMRI brain age prediction model with lightweight multi-scale convolutional network [J]. Journal of Computer Applications, 2024, 44(12): 3949-3957. |
[15] | Hao CHEN, Zhenping XIA, Cheng CHENG, Xing LIN-LI, Bowen ZHANG. Lightweight image super-resolution reconstruction network based on Transformer-CNN [J]. Journal of Computer Applications, 2024, 44(1): 292-299. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||