[1] HUANG G B,ZHU Q Y,SIEW C K. Extreme learning machine:theory and applications[J]. Neurocomputing,2006,70(1/2/3):489-501. [2] HUANG G B,WANG D H,LAN Y. Extreme learning machines:a survey[J]. International Journal of Machine Learning and Cybernetics,2011,2(2):107-122. [3] HUANG G,HUANG G B,SONG S J,et al. Trends in extreme learning machines:a review[J]. Neural Networks,2015,61:32-48. [4] MAN Z H,LEE K,WANG D H,et al. A new robust training algorithm for a class of single-hidden layer feedforward neural networks[J]. Neurocomputing,2011,74(16):2491-2501. [5] YU Q,MICHE Y,EIROLA E,et al. Regularized extreme learning machine for regression with missing data[J]. Neurocomputing, 2013,102:45-51. [6] HUANG G B,CHEN L. Convex incremental extreme learning machine[J]. Neurocomputing,2007,70(16/17/18):3056-3062. [7] YANG Y M,WANG Y N,YUAN X F. Bidirectional extreme learning machine for regression problem and its learning effectiveness[J]. IEEE Transactions on Neural Networks and Learning Systems,2012,23(9):1498-1505. [8] ZHANG R,LAN Y,HUANG G B,et al. Universal approximation of extreme learning machine with adaptive growth of hidden nodes[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012,23(2):365-371. [9] DENG J,LI K,IRWIN G W. Fast automatic two-stage nonlinear model identification based on the extreme learning machine[J]. Neurocomputing,2011,74(16):2422-2429. [10] WANG Y G,CAO F L,YUAN Y B. A study on effectiveness of extreme learning machine[J]. Neurocomputing,2011,74(16):2483-2490. [11] YUAN Y B,WANG Y G,CAO F L. Optimization approximation solution for regression problem based on extreme learning machine[J]. Neurocomputing,2011,74(16):2475-2482. [12] 李新, 何传江. 矩阵理论及其应用[M]. 重庆:重庆大学出版社, 2005:200-203. (LI X, HE C J. Matrix Theory and Application[M]. Chongqing:Chongqing University Press,2005:200-203.) [13] SHIN D H,PARK R H,YANG S,et al. Block-based noise estimation using adaptive Gaussian filtering[C]//Proceedings of the 2005 Digest of Technical Papers-International Conference on Consumer Electronics. Piscataway:IEEE,2005:263-264. [14] 来杰, 王晓丹, 李睿, 等. 基于去噪自编码器的极限学习机[J]. 计算机应用,2019,39(6):1619-1625.(LAI J,WANG X D,LI R,et al. Denoising autoencoder based extreme learning machine[J]. Journal of Computer Applications,2019,39(6):1619-1625.) [15] 常振良, 黄攀, 杨小冈, 等. 对基于广义逆矩阵密钥协商协议的优化改进[J]. 计算机科学与应用,2020,10(6):1180-1184. (CHANG Z L,HUANG P,YANG X G,et al. Optimization and improvement of key agreement based on generalized inverse matrix[J]. Computer Science and Application,2020,10(6):1180-1184.) [16] 徐睿, 梁循, 齐金山, 等. 极限学习机前沿进展与趋势[J]. 计算机学报,2019,42(7):1640-1670.(XU R,LIANG X,QI J S, et al. Advances and trends in extreme learning machine[J]. Chinese Journal of Computers,2019,42(7):1640-1670.) |