Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (12): 3455-3461.DOI: 10.11772/j.issn.1001-9081.2021060979
Special Issue: 第十八届中国机器学习会议(CCML 2021)
• The 18th China Conference on Machine Learning • Previous Articles Next Articles
Han DU1,2, Xianzhong LONG1,2(), Yun LI1,2
Received:
2021-05-12
Revised:
2021-07-23
Accepted:
2021-08-05
Online:
2021-12-28
Published:
2021-12-10
Contact:
Xianzhong LONG
About author:
DU Han, born in 1998, M. S. candidate. His research interests include application of machine learning algorithms in image classification.Supported by:
通讯作者:
龙显忠
作者简介:
杜汉(1998—),男,河南南阳人,硕士研究生,主要研究方向:机器学习算法在图像分类中的应用基金资助:
CLC Number:
Han DU, Xianzhong LONG, Yun LI. Graph learning regularized discriminative non-negative matrix factorization based face recognition[J]. Journal of Computer Applications, 2021, 41(12): 3455-3461.
杜汉, 龙显忠, 李云. 基于图学习正则判别非负矩阵分解的人脸识别[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3455-3461.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021060979
数据集 | 样本数 | 每类的样本数 | 维度 | 类的个数 |
---|---|---|---|---|
UMIST | 575 | 19~48 | 1 600 | 20 |
Yale | 165 | 11 | 1 600 | 15 |
Tab. 1 Statistics of two datasets
数据集 | 样本数 | 每类的样本数 | 维度 | 类的个数 |
---|---|---|---|---|
UMIST | 575 | 19~48 | 1 600 | 20 |
Yale | 165 | 11 | 1 600 | 15 |
算法 | 3train | 5train | 7train | 9train | 11train | 13 train | 15train |
---|---|---|---|---|---|---|---|
PCA[ | 0.618 0 | 0.714 1 | 0.777 7 | 0.826 8 | 0.867 0 | 0.873 9 | 0.905 8 |
LPP[ | 0.593 0 | 0.666 3 | 0.732 4 | 0.795 4 | 0.836 3 | 0.872 0 | 0.913 4 |
NMF[ | 0.649 1 | 0.772 8 | 0.854 7 | 0.908 1 | 0.934 3 | 0.948 5 | 0.966 1 |
LNMF[ | 0.662 9 | 0.789 4 | 0.850 1 | 0.905 3 | 0.936 9 | 0.941 9 | 0.962 9 |
GNMF[ | 0.663 6 | 0.789 4 | 0.864 8 | 0.909 6 | 0.947 3 | 0.951 7 | 0.968 0 |
GDNMF[ | 0.657 6 | 0.785 2 | 0.863 2 | 0.918 2 | 0.945 9 | 0.953 9 | 0.975 2 |
RCGLDNMF | 0.693 7 | 0.854 3 | 0.899 7 | 0.921 0 | 0.949 2 | 0.976 1 | 0.974 1 |
GLDNMF | 0.744 0 | 0.869 8 | 0.930 5 | 0.950 1 | 0.973 5 | 0.980 0 | 0.990 9 |
Tab. 2 Average accuracies of different algorithms on UMIST dataset
算法 | 3train | 5train | 7train | 9train | 11train | 13 train | 15train |
---|---|---|---|---|---|---|---|
PCA[ | 0.618 0 | 0.714 1 | 0.777 7 | 0.826 8 | 0.867 0 | 0.873 9 | 0.905 8 |
LPP[ | 0.593 0 | 0.666 3 | 0.732 4 | 0.795 4 | 0.836 3 | 0.872 0 | 0.913 4 |
NMF[ | 0.649 1 | 0.772 8 | 0.854 7 | 0.908 1 | 0.934 3 | 0.948 5 | 0.966 1 |
LNMF[ | 0.662 9 | 0.789 4 | 0.850 1 | 0.905 3 | 0.936 9 | 0.941 9 | 0.962 9 |
GNMF[ | 0.663 6 | 0.789 4 | 0.864 8 | 0.909 6 | 0.947 3 | 0.951 7 | 0.968 0 |
GDNMF[ | 0.657 6 | 0.785 2 | 0.863 2 | 0.918 2 | 0.945 9 | 0.953 9 | 0.975 2 |
RCGLDNMF | 0.693 7 | 0.854 3 | 0.899 7 | 0.921 0 | 0.949 2 | 0.976 1 | 0.974 1 |
GLDNMF | 0.744 0 | 0.869 8 | 0.930 5 | 0.950 1 | 0.973 5 | 0.980 0 | 0.990 9 |
算法 | 3train | 5train | 7train | 9train |
---|---|---|---|---|
PCA[ | 0.641 6 | 0.672 2 | 0.675 0 | 0.700 0 |
LPP[ | 0.654 1 | 0.680 0 | 0.685 0 | 0.720 0 |
NMF[ | 0.722 5 | 0.720 0 | 0.723 3 | 0.743 3 |
LNMF[ | 0.655 0 | 0.658 8 | 0.653 3 | 0.676 6 |
GNMF[ | 0.695 8 | 0.702 2 | 0.713 3 | 0.743 3 |
GDNMF[ | 0.707 5 | 0.711 1 | 0.731 6 | 0.756 6 |
RCGLDNMF | 0.765 8 | 0.777 7 | 0.778 3 | 0.803 3 |
GLDNMF | 0.776 6 | 0.783 3 | 0.791 6 | 0.816 6 |
Tab. 3 Average accuracies of different algorithms on Yale dataset
算法 | 3train | 5train | 7train | 9train |
---|---|---|---|---|
PCA[ | 0.641 6 | 0.672 2 | 0.675 0 | 0.700 0 |
LPP[ | 0.654 1 | 0.680 0 | 0.685 0 | 0.720 0 |
NMF[ | 0.722 5 | 0.720 0 | 0.723 3 | 0.743 3 |
LNMF[ | 0.655 0 | 0.658 8 | 0.653 3 | 0.676 6 |
GNMF[ | 0.695 8 | 0.702 2 | 0.713 3 | 0.743 3 |
GDNMF[ | 0.707 5 | 0.711 1 | 0.731 6 | 0.756 6 |
RCGLDNMF | 0.765 8 | 0.777 7 | 0.778 3 | 0.803 3 |
GLDNMF | 0.776 6 | 0.783 3 | 0.791 6 | 0.816 6 |
1 | LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755):788-791. 10.1038/44565 |
2 | LEE D D, SEUNG H S. Algorithms for non-negative matrix factorization[C]// Proceedings of the 13th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2000: 535-541. |
3 | PALMER S E. Hierarchical structure in perceptual representation[J]. Cognitive Psychology, 1977, 9(4):441-474. 10.1016/0010-0285(77)90016-0 |
4 | WACHSMUTH E, ORAM M W, PERRETT D I. Recognition of objects and their component parts: responses of single units in the temporal cortex of the macaque[J]. Cerebral Cortex, 1994, 4(5):509-522. 10.1093/cercor/4.5.509 |
5 | LOGOTHETIS N K, SHEINBERG D L W. Visual object recognition[J]. Annual Review of Neuroscience, 1996, 19:577-621. 10.1146/annurev.ne.19.030196.003045 |
6 | VAVASIS S A. On the complexity of nonnegative matrix factorization[J]. SIAM Journal on Optimization, 2010, 20(3):1364-1377. 10.1137/070709967 |
7 | BERRY M W, BROWNE M, LANGVILLE A N, et al. Algorithms and applications for approximate nonnegative matrix factorization[J]. Computational Statistics and Data Analysis, 2007, 52(1):155-173. 10.1016/j.csda.2006.11.006 |
8 | DING C, LI T, JORDAN M I. Nonnegative matrix factorization for combinatorial optimization: spectral clustering, graph matching, and clique finding[C]// Proceedings of the 8th IEEE International Conference on Data Mining. Piscataway: IEEE, 2008: 183-192. 10.1109/icdm.2008.130 |
9 | ARORA S, GE R, KANNAN R, et al. Computing a nonnegative matrix factorization - provably[C]// Proceedings of the 44th Annual ACM Symposium on Theory of Computing. New York: ACM, 2012: 145-162. 10.1145/2213977.2213994 |
10 | XU W, LIU X, GONG Y H. Document clustering based on non-negative matrix factorization[C]// Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2003:267-273. 10.1145/860435.860485 |
11 | LI S Z, HOU X W, ZHANG H J, et al. Learning spatially localized, parts-based representation[C]// Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2001: 207-212. 10.1109/cvpr.2001.990477 |
12 | BRUNET J P, TAMAYO P, GOLUB T R, et al. Metagenes and molecular pattern discovery using matrix factorization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(12):4164-4169. 10.1073/pnas.0308531101 |
13 | WANG M N, YOU Z H, WANG L, et al. LDGRNMF: lncRNA-disease associations prediction based on graph regularized non-negative matrix factorization[J]. Neurocomputing, 2020, 424:236-245. 10.1016/j.neucom.2020.02.062 |
14 | CAI D, HE X F, HAN J W, et al. Graph regularized nonnegative matrix factorization for data representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8):1548-1560. 10.1109/tpami.2010.231 |
15 | WANG Y X, ZHANG Y J. Nonnegative matrix factorization: a comprehensive review[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(6):1336-1353. 10.1109/tkde.2012.51 |
16 | BI H B, LI N, GUAN H P, et al. A multi-scale conditional generative adversarial network for face sketch synthesis[C]// Proceedings of the 2019 IEEE International Conference on Image Processing. Piscataway: IEEE, 2019:3876-3880. 10.1109/icip.2019.8803629 |
17 | HUANG Y G, WANG Y H, TAI Y, et al. CurricularFace: adaptive curriculum learning loss for deep face recognition[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020:5900-5909. 10.1109/cvpr42600.2020.00594 |
18 | YAN S C, XU D, ZHANG B Y, et al. Graph embedding and extensions: a general framework for dimensionality reduction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1):40-51. 10.1109/tpami.2007.250598 |
19 | WEN J H, TIAN Z, LIU X Z, et al. Neighborhood preserving orthogonal PNMF feature extraction for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(2):759-768. 10.1109/jstars.2012.2210276 |
20 | GU F, ZHANG W J, ZHANG X, et al. GNMF revisited: joint robust k-NN graph and reconstruction-based graph regularization for image clustering[C]// Proceedings of the 2017 International Conference on Artificial Neural Networks, LNCS10614. Cham: Springer, 2017: 442-449. |
21 | GUO W Y. Sparse dual graph-regularized deep nonnegative matrix factorization for image clustering[J]. IEEE Access, 2021, 9:39926-39938. 10.1109/access.2021.3064631 |
22 | LU G F, WANG Y, ZOU J. Low-rank matrix factorization with adaptive graph regularizer[J]. IEEE Transactions on Image Processing, 2016, 25(5):2196-2205. 10.1109/tip.2016.2542919 |
23 | LONG X Z, XIONG J, CHEN L. Robust automated graph regularized discriminative non-negative matrix factorization[J]. Multimedia Tools and Applications, 2021, 80(10): 14867-14886. 10.1007/s11042-020-10410-w |
24 | ZHANG G F, CHEN J X. Non-negative matrix factorization via adaptive sparse graph regularization[J]. Multimedia Tools and Applications, 2021, 80(8): 12507-12524. 10.1007/s11042-020-10247-3 |
25 | YAN J C, LI C S, LI Y, et al. Adaptive discrete hypergraph matching[J]. IEEE Transactions on Cybernetics, 2018, 48(2):765-779. 10.1109/tcyb.2017.2655538 |
26 | HUANG S D, XU Z L, WANG F. Nonnegative matrix factorization with adaptive neighbors[C]// Proceedings of the 2017 International Joint Conference on Neural Networks. Piscataway: IEEE, 2017: 486-493. 10.1109/ijcnn.2017.7965893 |
27 | YI Y G, WANG J Z, ZHOU W, et al. Non-negative matrix factorization with locality constrained adaptive graph[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(2):427-441. 10.1109/tcsvt.2019.2892971 |
28 | LIU H F, WU Z H, LI X L, et al. Constrained nonnegative matrix factorization for image representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7):1299-1311. 10.1109/tpami.2011.217 |
29 | LEE H, YOO J, CHOI S. Semi-supervised nonnegative matrix factorization[J]. IEEE Signal Processing Letters, 2010, 17(1):4-7. 10.1109/lsp.2009.2027163 |
30 | WANG Y, JIA Y D, HU C B, et al. Fisher non-negative matrix factorization for learning local features[EB/OL]. [2020-12-20]. |
31 | LONG X Z, LU H T, PENG Y, et al. Graph regularized discriminative non-negative matrix factorization for face recognition[J]. Multimedia Tools and Applications, 2014, 72(3): 2679-2699. 10.1007/s11042-013-1572-z |
32 | FUKUNAGA K. Introduction to Statistical Pattern Recognition[M]. 2nd ed. San Diego, CA: Academic Press, 1990. 10.1016/b978-0-08-047865-4.50007-7 |
33 | HE X F, NIYOGI P. Locality preserving projections[C]// Proceedings of the 16th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2003:153-160. |
34 | LI C G, YOU C, VIDAL R. Structured sparse subspace clustering: a joint affinity learning and subspace clustering framework[J]. IEEE Transactions on Image Processing, 2017, 26(6):2988-3001. 10.1109/tip.2017.2691557 |
35 | GRAHAM D B, ALLINSON N M. Characterising virtual eigensignatures for general purpose face recognition[M]// WECHSLER H, PHILLIPS P J, BRUCE V, et al. Face Recognition: From Theory to Applications. Berlin: Springer, 1998: 446-456. 10.1007/978-3-642-72201-1_25 |
36 | SIM T, BAKER S, BSAT M. The CMU pose, illumination, and expression database[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(12):1615-1618. 10.1109/tpami.2003.1251154 |
[1] | Zhuo ZHANG, Huazhu CHEN. Deep subspace clustering based on multiscale self-representation learning with consistency and diversity [J]. Journal of Computer Applications, 2024, 44(2): 353-359. |
[2] | Jingxin LIU, Wenjing HUANG, Liangsheng XU, Chong HUANG, Jiansheng WU. Unsupervised feature selection model with dictionary learning and sample correlation preservation [J]. Journal of Computer Applications, 2024, 44(12): 3766-3775. |
[3] | Ziyi HE, Yan YANG, Yiling ZHANG. Multi-view clustering network with deep fusion [J]. Journal of Computer Applications, 2023, 43(9): 2651-2656. |
[4] | Chungang HAN, Yonghui LIU. Face liveness detection algorithm based on GhostNet and feature fusion [J]. Journal of Computer Applications, 2023, 43(8): 2588-2592. |
[5] | Kansong CHEN, Yuan ZHENG, Lijun XU, Zhouyu WANG, Zhe ZHANG, Fujuan YAO. ShuffaceNet: face recognition neural network based on ThetaMEX global pooling [J]. Journal of Computer Applications, 2023, 43(8): 2572-2580. |
[6] | Huaiqing HE, Jianqing YAN, Kanghua HUI. Lightweight face recognition method based on deep residual network [J]. Journal of Computer Applications, 2022, 42(7): 2030-2036. |
[7] | Ruijie YANG, Guilin ZHENG. Face liveness detection based on InceptionV3 and feature fusion [J]. Journal of Computer Applications, 2022, 42(7): 2037-2042. |
[8] | GAO Gong, YANG Hongyu, LIU Hong. 3D point cloud face recognition based on deep learning [J]. Journal of Computer Applications, 2021, 41(9): 2736-2740. |
[9] | CHEN Zhengtao, HUANG Can, YANG Bo, ZHAO Li, LIAO Yong. Yak face recognition algorithm of parallel convolutional neural network based on transfer learning [J]. Journal of Computer Applications, 2021, 41(5): 1332-1336. |
[10] | LI Xingfeng, HUANG Yuqing, REN Zhenwen, LI Yihong. Robust multi-view clustering algorithm based on adaptive neighborhood [J]. Journal of Computer Applications, 2021, 41(4): 1093-1099. |
[11] | LI Hongxia, QIN Pinle, YAN Hanmei, ZENG Jianchao, BAO Qianyue, CHAI Rui. Face frontalization generative adversarial network algorithm based on face feature map symmetry [J]. Journal of Computer Applications, 2021, 41(3): 714-720. |
[12] | Zhenjun PAN, Cheng LIANG, Huaxiang ZHANG. Robust multi-view subspace clustering based on consistency graph learning [J]. Journal of Computer Applications, 2021, 41(12): 3438-3446. |
[13] | ZHAO Qing, YU Yuanhui. 3D face recognition based on hierarchical feature network [J]. Journal of Computer Applications, 2020, 40(9): 2514-2518. |
[14] | FANG Shuya, LIU Shouyin. Non-perception class attendance method based on student body detection [J]. Journal of Computer Applications, 2020, 40(9): 2519-2524. |
[15] | WANG Jinkai, JIA Xu. Vehicle face recognition algorithm based on NMF with weighted and orthogonal constraints [J]. Journal of Computer Applications, 2020, 40(4): 1050-1055. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||