[1] ZENG L, SHEN H, LIU L, et al. Identifying major depression using whole-brain functional connectivity:a multivariate pattern analysis[J]. Brain, 2012, 135(5):1498-1507. [2] NIXON N L, LIDDLE P F, NIXON E, et al. Biological vulnerability to depression:linked structural and functional brain network findings[J]. The British Journal of Psychiatry, 2014, 204(4):283-289. [3] HUANG S, LI J, SUN L, et al. Learning brain connectivity of Alzheimer's disease by sparse inverse covariance estimation[J]. NeuroImage, 2010, 50(3):935-949. [4] JIE B, WEE C Y, SHEN D, et al. Hyper-connectivity of functional networks for brain disease diagnosis[J]. Medical Image Analysis, 2016, 32:84-100. [5] LIU M, ZHANG J, YAP P T, et al. Diagnosis of Alzheimer's disease using view-aligned hypergraph learning with incomplete multi-modality data[C]//Proceedings of the 2016 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9900. Cham:Springer, 2016:308-316. [6] 彭瑶,祖辰,张道强.基于超图的多模态特征选择算法及其应用[J].计算机科学与探索,2018,12(1):112-119.(PENG Y, ZU C, ZHANG D Q. Hypergraph based multi-modal feature selection and its application[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(1):112-119.) [7] 靳研艺,郭浩,陈俊杰.基于elasticnet方法的静息态脑功能超网络构建优化[J].计算机应用研究,2018,35(11):3276-3280,3297.(JIN Y Y, GUO H, CHEN J J. Optimization of resting-state brain functional hyper-network construction based on elastic net[J]. Application Research of Computers, 2018, 35(11):3276-3280, 3297.) [8] 张帆,陈俊杰,郭浩.基于脑功能超网络的多特征融合分类方法[J].计算机工程与应用,2018,54(21):120-127.(ZHANG F, CHEN J J, GUO H. Machine learning classification method combining multiple features of brain function hyper-network[J]. Computer Engineering and Applications, 2018, 54(21):120-127.) [9] GU S, YANG M, MEDAGLIA J D, et al. Functional hypergraph uncovers novel covariant structures over neurodevelopment[J]. Human Brain Mapping, 2017, 38(8):3823-3835. [10] ZU C, GAO Y, MUNSELL B, et al. Identifying disease-related subnetwork connectome biomarkers by sparse hypergraph learning[J]. Brain Imaging and Behavior, 2019, 13(4):879-892. [11] GALLAGHER S R, GOLDBERG D S. Clustering coefficients in protein interaction hypernetworks[C]//Proceedings of the 2013 International Conference on Bioinformatics, Computational Biology and Biomedical Informatics. New York:ACM, 2013:552-560. [12] ZOU H, HASTIE T. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society:Series B (Statistical Methodology), 2005, 67(2):301-320. [13] LIU X, GONCALVES A R, CAO P, et al. Modeling Alzheimer's disease cognitive scores using multi-task sparse group lasso[J]. Computerized Medical Imaging and Graphics, 2018, 66:100-114. [14] GUO H, LI Y, XU Y, et al. Resting-state brain functional hyper-network construction based on elastic net and group lasso methods[J]. Frontiers in Neuroinformatics, 2018, 12:No.25. [15] FRIEDMAN J, HASTIE T, TIBSHIRANI R. A note on the group lasso and a sparse group lasso[R]. Stanford:Stanford University, 2010. [16] OGUTU J O, PIEPHO H P. Regularized group regression methods for genomic prediction:Bridge, MCP, SCAD, group bridge, group lasso, sparse group lasso, group MCP and group SCAD[J]. BMC Proceedings, 2014, 8(S5):No.S7. [17] MATSUI H. Sparse group lasso for multiclass functional logistic regression models[J]. Communications in Statistics-Simulation and Computation, 2019, 48(6):1784-1797. [18] GOLDBERG D S, ROTH F P. Assessing experimentally derived interactions in a small world[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(8):4372-4376. [19] LATAPY M, MAGNIEN C, VECCHIO N D. Basic notions for the analysis of large two-mode networks[J]. Social Networks, 2008, 30(1):31-48. [20] FORNITO A, ZALESKY A, BREAKSPEAR M. Graph analysis of the human connectome:promise, progress, and pitfalls[J]. NeuroImage, 2013, 80:426-444. [21] KAUFMANN M, VAN KREVELD M, SPECKMANN B. Subdivision drawings of hypergraphs[C]//Proceedings of the 2008 International Symposium on Graph Drawing, LNCS 5417. Berlin:Springer, 2008:396-407. [22] TZOURIO-MAZOYER N, LANDEAU B, PAPATHANASSIOU D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain[J]. NeuroImage, 2002, 15(1):273-289. [23] MEIER L, VAN DE GEER S, BVHLMANN P. The group lasso for logistic regression[J]. Journal of the Royal Statistical Society:Series B (Statistical Methodology), 2008, 70(1):53-71. [24] PARK H S, JUN C H. A simple and fast algorithm for K-medoids clustering[J]. Expert Systems with Applications, 2009, 36(2):3336-3341. [25] YUAN M, LIN Y. Model selection and estimation in regression with grouped variables[J]. Journal of the Royal Statistical Society:Series B (Statistical Methodology), 2006, 68(1):49-67. [26] FRIEDMAN J, HASTIE T, TIBSHIRANI R. Regularization paths for generalized linear models via coordinate descent[R]. Stanford:Stanford University, 2009. [27] SIMON N, FRIEDMAN J, HASTIE T, et al. A sparse-group lasso[J]. Journal of Computational and Graphical Statistics, 2013, 22(2):231-245. [28] LIU J, JI S, YE J. SLEP:sparse learning with efficient projections[EB/OL].[2019-01-20].http://read.pudn.com/downloads701/sourcecode/math/2820891/SLEP/manual.pdf. [29] FASANO G, FRANCESCHINI A. A multidimensional version of the Kolmogorov-Smirnov test[J]. Monthly Notices of the Royal Astronomical Society, 1987, 225(1):9-20. [30] BENJAMINI Y, HOCHBERG Y. Controlling the false discovery rate:a practical and powerful approach to multiple testing[J]. Journal of the Royal Statistical Society:Series B (Statistical Methodology), 1995, 57(1):289-300. [31] ZHANG D, WANG Y, ZHOU L, et al. Multimodal classification of Alzheimer's disease and mild cognitive impairment[J]. NeuroImage, 2011, 55(3):856-867. [32] ZHU J, SHEN X, QIN J, et al. Altered anatomical modular organization of brain networks in patients with major depressive disorder[C]//Proceedings of the 2016 International Conference on Biological Sciences and Technology. Paris:Atlantis Press, 2016, 2:284-289. [33] LIU F, HU M, WANG S, et al. Abnormal regional spontaneous neural activity in first-episode, treatment-naive patients with late-life depression:a resting-state fMRI study[J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2012, 39(2):326-331. [34] JIN C, GAO C, CHEN C, et al. A preliminary study of the dysregulation of the resting networks in first-episode medication-naive adolescent depression[J]. Neuroscience Letters, 2011, 503(2):105-109. [35] GUO H, CAO X, LIU Z, et al. Machine learning classifier using abnormal brain network topological metrics in major depressive disorder[J]. Neuroreport, 2012, 23(17):1006-1011. [36] QIU L, HUANG X, ZHANG J, et al. Characterization of major depressive disorder using a multiparametric classification approach based on high resolution structural images[J]. Journal of Psychiatry and Neuroscience, 2014, 39(2):78-86. [37] LORD A, HORN D, BREAKSPEAR M, et al. Changes in community structure of resting state functional connectivity in unipolar depression[J]. PLoS One, 2012, 7(8):No.e41282. [38] LIU F, GUO W, LIU L, et al. Abnormal amplitude low-frequency oscillations in medication-naive, first-episode patients with major depressive disorder:a resting-state fMRI study[J]. Journal of Affective Disorders, 2013, 146(3):401-406. [39] ROLLS E T, CHENG W, GILSON M, et al. Effective connectivity in depression[J]. Biological Psychiatry:Cognitive Neuroscience and Neuroimaging, 2018, 3(2):187-197. [40] LUI S, WU Q, QIU L, et al. Resting-state functional connectivity in treatment-resistant depression[J]. American Journal of Psychiatry, 2011, 168(6):642-648. [41] GUO H, YAN P, CHENG C, et al. fMRI classification method with multiple feature fusion based on minimum spanning tree analysis[J]. Psychiatry Research:Neuroimaging, 2018, 277:14-27. [42] ZHANG J, WANG J, WU Q, et al. Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder[J]. Biological Psychiatry, 2011, 70(4):334-342. [43] FITZGERALD P B, LAIRD A R, MALLER J, et al. A meta-analytic study of changes in brain activation in depression[J]. Human Brain Mapping, 2008, 29(6):683-695. [44] 皇甫浩然,杨剑,杨阳.基于fMRI动态功能连接的抑郁症患者分类研究[J].计算机应用研究,2017,34(3):678-682.(HUANGFU H R, YANG J, YANG Y. Classifying patients with depression based on fMRI dynamic functional connectivity[J]. Application Research of Computers, 2017, 34(3):678-682.) [45] ROSA M J, PORTUGAL L, HAHN T, et al. Sparse network-based models for patient classification using fMRI[J]. NeuroImage, 2015, 105:493-506. |