1 |
KE C. Military object detection using multiple information extracted from hyperspectral imagery[C]// Proceedings of the 2017 International Conference on Progress in Informatics and Computing. Piscataway: IEEE, 2017: 124-128. 10.1109/pic.2017.8359527
|
2 |
BALSI M, ESPOSITO S, MORONI M. Hyperspectral characterization of marine plastic litters[C]// Proceedings of the 2018 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters. Piscataway: IEEE, 2018: 28-32. 10.1109/metrosea.2018.8657875
|
3 |
CEAMANO X, BRIOTTET X, ROUSSEL G, et al. Using 3D information for atmospheric correction of airborne hyperspectral images of urban areas[C]// Proceedings of the 2017 Joint Urban Remote Sensing Event. Piscataway: IEEE, 2017: 1-4. 10.1109/jurse.2017.7924563
|
4 |
张良培,李家艺.高光谱图像稀疏信息处理综述与展望[J].遥感学报,2016,20(5):1091-1101. 10.11834/jrs.20166050
|
|
ZHANG L P, LI J Y. Development and prospect of sparse representation-based hyperspectral image processing and analysis[J]. Journal of Remote Sensing, 2016, 20(5): 1091-1101. 10.11834/jrs.20166050
|
5 |
杨刚,孙伟伟,张殿发. 利用可分离非负矩阵分解实现高光谱波段选择[J]. 武汉大学学报(信息科学版), 2019, 44(5):737-744.
|
|
YANG G, SUN W W, ZHANG D F. Separable nonnegative matrix factorization based band selection for hyperspectral imagery[J]. Geomatice and Information Science of Wuhan University, 2019, 44(5): 737-744.
|
6 |
CHANG C I, DU Q, SUN T L, et al. A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(6): 2631-2641. 10.1109/36.803411
|
7 |
ZHU L, MIAO L, ZHANG D. Iterative Laplacian score for feature selection[C]// Proceedings of the 2012 Chinese Conference on Pattern Recognition, CCIS321. Berlin: Springer, 2012: 80-87.
|
8 |
SUN K, GENG X, JI L. A new sparsity-based band selection method for target detection of hyperspectral image[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(2):329-333. 10.1109/lgrs.2014.2337957
|
9 |
CAI Y, CAI Z, ZENG M, et al. A novel deep learning approach: stacked evolutionary auto-encoder[C]// Proceedings of the 2018 International Joint Conference on Neural Networks. Piscataway: IEEE, 2018: 1-8. 10.1109/ijcnn.2018.8489138
|
10 |
SUN W, ZHANG L, DU B, et al. Band selection using improved sparse subspace clustering for hyperspectral imagery classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6): 2784-2797. 10.1109/jstars.2015.2417156
|
11 |
LI J, QIAN Y. Clustering-based hyperspectral band selection using sparse nonnegative matrix factorization[J]. Journal of Zhejiang University SCIENCE C, 2011, 12(7):542-549. 10.1631/jzus.c1000304
|
12 |
JI P, ZHANG T, LI H, et al. Deep subspace clustering networks[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: Curran Associates Inc., 2017: 23-32.
|
13 |
ZENG M, CAI Y, CAI Z, et al. Unsupervised hyperspectral image band selection based on deep subspace clustering[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(12):1889-1893. 10.1109/LGRS.2019.2912170
|
14 |
ZHOU P, HOU Y, FENG J. Deep adversarial subspace clustering[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1596-1604. 10.1109/cvpr.2018.00172
|
15 |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge, MA: MIT Press , 2014: 2672-2680.
|
16 |
ELHAMIFAR E, VIDAL R. Sparse subspace clustering: algorithm, theory, and applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2765-2781. 10.1109/tpami.2013.57
|
17 |
ALBAWI S, MOHAMMED T A, AL-ZAWI S. Understanding of a convolutional neural network[C]// Proceedings of the 2017 International Conference on Engineering and Technology. Piscataway: IEEE, 2017: 1-6. 10.1109/icengtechnol.2017.8308186
|
18 |
YIN M, GAO J, LIN Z. Laplacian regularized low-rank representation and its applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(3): 504-517. 10.1109/tpami.2015.2462360
|
19 |
ZHANG X, WANG S C, ZHAO Y. Application of support vector machine and least squares vector machine to freight volume forecast[C]// Proceedings of the 2011 International Conference on Remote Sensing, Environment and Transportation Engineering. Piscataway: IEEE, 2011:104-107. 10.1109/rsete.2011.5964227
|