[1] 《中国公路学报》 编辑部. 中国桥梁工程学术研究综述·2014[J]. 中国公路学报,2014, 27(5):1-96. (Editorial office of China journal of highway and transport. Review on China's bridge engineering research:2014[J]. China Journal of Highway and Transport,2014, 27(5):1-96.) [2] SANCHEZ-CUEVAS P J,HEREDIA G,OLLERO A. Multirotor UAS for bridge inspection by contact using the ceiling effect[C]//Proceedings of the 2017 International Conference on Unmanned Aircraft Systems. Piscataway,NJ:IEEE,2017:767-774. [3] JIMENEZ-CANO A E, HEREDIA G, OLLERO A. Aerial manipulator with a compliant arm for bridge inspection[C]//Proceedings of the 2017 International Conference on Unmanned Aircraft Systems. Piscataway,NJ:IEEE,2017:1217-1222. [4] AMHAZ R,CHAMBON S,IDIER J,BALTAZART V. Automatic crack detection on two-dimensional pavement images:an algorithm based on minimal path selection[J]. IEEE Transactions on Intelligent Transportation Systems,2016,17(10):2718-2729. [5] 王耀东, 朱力强, 史红梅, 等. 基于局部图像纹理计算的隧道裂缝视觉检测技术[J]. 铁道学报,2018,40(2):82-90. (WANG Y D,ZHU L Q,SHI H M,et al. Vision detection of tunnel crack based on local image texture calculation[J]. Journal of the China Railway Society,2018,40(2):82-90.) [6] HASSAN N,MATHAVAN S,KAMAL K. Road crack detection using the particle filter[C]//Proceedings of the 2017 International Conference on Automation and Computing. Piscataway,NJ:IEEE, 2017:1-6. [7] 钱彬, 唐振民, 沈肖波, 等. 基于多特征流形学习和矩阵分解的路面裂缝检测[J]. 仪器仪表学报,2016,37(7):1639-1646. (QIAN B,TANG Z M,SHEN X B,et al. Pavement crack detection based on multi-feature manifold learning and matrix factorization[J]. Chinese Journal of Scientific Instrument,2016,37(7):1639-1646.) [8] MUSTAFA R,MOHAMED E A. Concrete crack detection based multi-block CLBP features and SVM classifier[J]. Journal of Theoretical and Applied Information Technology,2015,81(1):151-160. [9] QUINTANA M, TORRES J, MENENDEZ J M. A simplified computer vision system for road surface inspection and maintenance view document[J]. IEEE Transactions on Intelligent Transportation Systems,2016,17(3):608-619. [10] SHI Y,CUI L,QI Z,et al. Automatic road crack detection using random structured forests[C]//IEEE Transactions on Intelligent Transportation Systems,2016,17(12):3434-3445. [11] OLIVEIRA H,CORREIA P L. Road surface crack detection:improved segmentation with pixel-based refinement[C]//Proceedings of the 2017 European Signal Processing Conference. Piscataway,NJ:IEEE,2017:2026-2030. [12] ZHANG D,LI Q,CHEN Y,et al. An efficient and reliable coarse-to-fine approach for asphalt pavement crack detection[J]. Image and Vision Computing,2017,57(C):130-146. [13] EILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//Proceedings of the 2014 European Conference on Computer Vision. Berlin:Springer,2014:818-833. [14] TOMASI C,MANDUCHI R. Bilateral filtering for gray and color images[C]//Proceedings of the 6th International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 1998:839-846. [15] LEI L,ZHOU Y,LI J. An investigation of Retinex algorithms for image enhancement[J]. Journal of Electronics(China),2007, 24(15):696-700. [16] 章毓晋. 图像处理与分析[M]. 北京:清华大学出社,1999:77-79. (ZHANG Y J. Image Processing and Analysis[M]. Beijing:Tsinghua University Press,1999:77-79.) [17] SIMONYAN K, ZISSERMAN A. Two-stream convolutional networks for action recognition in videos[J]. Advances in Neural Information Processing Systems,2014,1(4):568-576. [18] HASSAN N,MATHAVAN S,KAMAL K. Road crack detection using the particle filter[C]//Proceedings of the 2017 International Conference on Automation and Computing. Piscataway, NJ:IEEE,2017:1-6. [19] LEON B. Large-scale machine learning with stochastic Gradient descent[C]//Proceedings of the 19th International Conference on Computational Statistics. Piscataway,NJ:IEEE,2018:177-186. [20] 王睿, 漆泰岳, 雷波, 等. 隧道衬砌裂缝特征提取方法研究[J]. 岩石力学与工程学报,2015, 34(6):1211-1217.(WANG R,QI T Y,LEI B,et al. Characteristic extraction of cracks of tunnel lining[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6):1211-1217.) [21] 元大鹏. 地铁隧道图像数据分析系统[D]. 北京:北京交通大学,2016:43-46. (YUAN D P. Analysis system for subway tunnel image[D]. Beijing:Binjing Jiaotong University,2016:43-46.) |