1 徐国均,徐珞珊,刘柏英,等 . 中药材粉末显微鉴定[M]. 北京:人民卫生出版社, 1986: 14-608. XU G J , XU L S , LIU B Y , et al . Microscopic identification of Powdered Chinese Medicinal Materials[M]. Beijing: People’s Medical Publishing House, 1986: 14-608.
2 中华人民共和国卫生部药典委员会 . 中华人民共和国药典[M]. 北京:人民卫生出版社, 1977: 4-308. (Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia[M]. Beijing: People’s Medical Publishing House, 1977: 4-308.)
3 中华人民共和国卫生部药典委员会 . 中华人民共和国药典中药粉末显微鉴别彩色图集[M]. 广州:广东科技出版社, 1999: 3-374. (Chinese Pharmacopoeia Commission. Colored Collection of Microscopic Identification of Chinese Material Medica Powder from Chinese Pharmacopoeia [M]. Guangzhou: Guangdong Science and Technology Press, 1999: 3-374.)
4 赵中振 . 中药显微鉴别图鉴[M]. 沈阳:辽宁科学技术出版社, 2005: 1-323. (ZHAO Z Z. An Illustrated Microscopic Identification of Chinese Material Medica[M]. Shenyang: Liaoning Science and Technology Publishing House, 2005: 1-323.)
5 赵中振,陈虎彪 . 中药显微鉴定图典[M]. 福州:福建科学技术出版社, 2016: 17-335. (ZHAO Z Z, CHEN H B. Chinese Medicinal Microscopic Identification[M]. Fuzhou: Fujian Science and Technology Publishing House, 2016: 17-335.)
6 王一丁,石铎,李耀利,等 . 基于SqueezeNet深度网络的中药材粉末显微特征图像识别研究[J]. 电子显微学报, 2019, 38(2): 130-138. WANG Y D , SHI D , LI Y L , et al . Studies on identification of microscopic images of Chinese medicinal materials powder based on SqueezeNet deep network[J]. Journal of Chinese Electron Microscopy Society, 2019, 38(2): 130-138.
7 HINTON G E , SALAKHUTDINOV R R . Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
8 LECUN Y , BOTTOU L , BENGIO Y , et al . Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
9 SIMONYAN K , ZISSERMAN A . Very deep convolutional networks for large-scale image recognition[EB/OL]. [2019-05-20].https://arxiv.org/pdf/1409.1556.pdf.
10 SZEGEDY C , LIU W , JIA Y , et al . Going deeper with convolutions[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1-9.
11 HE K , ZHANG X , REN S , et al . Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
12 HE K , ZHANG X , REN S , et al . Identity mappings in deep residual networks[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9908. Cham: Springer, 2016: 630-645.
13 韩宏,王鹏,唐振民,等 . 彩色图像中复杂背景的多人脸检测[J]. 南京理工大学学报(自然科学版), 2001, 25(6): 597-601. HAN H , WANG P , TANG Z M , et al . Multiple human face detection in color image with complex background[J]. Journal of Nanjing University of Science and Technology (Natural Science Edition), 2001, 25(6): 597-601.
14 杨红玲,宣士斌,莫愿斌,等 . 基于YCbCr颜色空间手势分割[J]. 广西民族大学学报(自然科学版), 2017, 23(3): 61-66. YANG H L , XUAN S B , MO Y B , et al . Based on the gesture segmentation YCbCr color space[J]. Journal of Guangxi University for Nationalities (Natural Science Edition), 2017, 23(3): 61-66.
15 陈昌红,刘彬,张浩 . 基于多通道和卷积神经网络的极光分类[J]. 计算机技术与发展, 2018, 28(12): 200-204. (CHNE C H, LIU B, ZHANG H. Aurora images classification based on multi-channel fusion and convolutional neural network[J]. Computer Technology and Development, 2018, 28(12): 200-204.)
16 江凤兵 . 基于RGB-H-CbCr新颜色空间的肤色检测算法研究[J]. 科技广场, 2011(9): 34-38. (JIANG F B. The study of skin detection algorithms based on the RGB-H-CbCr new color space[J]. Science Mosaic, 2011(9): 34-38.)
17 CHOLLET F . Xception: deep Learning with depthwise separable convolutions[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1800-1807.
18 XIE S , GIRSHICK R , DOLLáR P , et al . Aggregated residual transformations for deep neural networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017:5987-5995.
19 HU J , SHEN L , SUN G . Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
20 WOO S, PARK J , LEE J Y, et al . CBAM: convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19.
21 LI X , WANG W HU X , et al . Selective kernel networks[EB/OL]. [2019-08-20].https://arxiv.org/pdf/1903.06586.pdf. |