1 TAYLOR J G , CUTSURIDIS V . Saliency, attention, active visual search, and picture scanning[J]. Cognitive Computation, 2011, 3(1): 1-3.
2 ABOUDIB A , GRIPON V , COPPIN G . A biologically inspired framework for visual information processing and an application on modeling bottom-up visual attention[J]. Cognitive Computation, 2016, 8(6): 1007-1026.
3 KRIZHEVSKY A , SUTSKEVER I , HINTON G E . ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. New York: Curran Associates Inc., 2012: 1097-1105.
4 SIMONYAN K , ZISSERMAN A . Very deep convolutional networks for large-scale image recognition[EB/OL]. [2019-04-05].https://arxiv.org/pdf/1409.1556.pdf.
5 SRIVASTAVA R K , GREFF K , SCHMIDHUBER J . Highway networks[EB/OL]. [2019-04-05].http://de.arxiv.org/pdf/1505.00387.
6 HE K , ZHANG X , REN S , et al . Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
7 REN S , HE K , GIRSHICK R , et al . Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
8 DAI J , LI Y , HE K , et al . R-FCN: object detection via region-based fully convolutional networks[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: Curran Associates Inc., 2016: 379-387.
9 SHELHAMER E , LONG J , DARRELL T . Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651.
10 彭晏飞,孙鲁 . 基于图像分割的语义标注方法[J]. 计算机应用, 2012,32(6): 1548-1551. (PENG Y F, SUN L. Semantic annotation based on image segmentation[J]. Journal of Computer Applications, 2012, 32(6): 1548-1551.)
11 谢志峰,叶冠桦,闫淑萁,等 . 基于生成对抗网络的HDR图像风格迁移技术[J]. 上海大学学报(自然科学版), 2018, 24(4):524-534. XIE Z F , YE G H , YAN S Q , et al . HDR image style transfer technique based on generative adversarial networks[J]. Journal of Shanghai University (Natural Science), 2018, 24(4): 524-534.
12 LI Y , FANG C , YANG J , et al . Universal style transfer via feature transforms[EB/OL]. [2019-04-05].https://arxiv.org/pdf/1705.08086.pdf.
13 YANG J , WRIGHT J , HUANG T S , et al . Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873.
14 YANG J , WANG Z , LIN Z , et al . Coupled dictionary training for image super-resolution[J]. IEEE Transactions on Image Processing, 2012, 21(8): 3467-3478.
15 SALVADOR J , PéEREZ-PELLITERO E . Naive Bayes super-resolution forest[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 325-333.
16 TIMOFTE R , DE SMET V , GOOL L VAN . A+: adjusted anchored neighborhood regression for fast super-resolution[C]// Proceedings of the 2014 Asian Conference on Computer Vision, LNCS 9006. Cham: Springer, 2014: 111-126.
17 TIMOFTE R , ROTHE R , GOOL L VAN . Seven ways to improve example-based single image super resolution[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1865-1873.
18 HUANG J B , SINGH A , AHUJA N . Single image super-resolution from transformed self-exemplars[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 5197-5206.
19 DONG C , LOY C C, HE K , et al . Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307.
20 WANG Z , LIU D , YANG J , et al . Deep networks for image super-resolution with sparse prior[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 370-378.
21 LIU D , WANG Z , WEN B , et al . Robust single image super-resolution via deep networks with sparse prior[J]. IEEE Transactions on Image Processing, 2016, 25(7): 3194-3207.
22 SHI W , CABALLERO J , HUSZAR F , et al . Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1874-1883.
23 LAI W S , HUANG J B , AHUJA N , et al . Deep Laplacian pyramid networks for fast and accurate super-resolution[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017:5835-5843.
24 REN P , SUN W , LUO C , et al . Clustering-oriented multiple convolutional neural networks for single image super-resolution[J]. Cognitive Computation, 2018, 10(1):165-178.
25 TAI Y , YANG J , LIU X . Image super-resolution via deep recursive residual network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2790-2798.
26 TONG T , LI G , LIU X , et al . Image super-resolution using dense skip connections[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017:4809-4817.
27 DONG C , LOY C C, TANG X . Accelerating the super-resolution convolutional neural network[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9906. Cham: Springer, 2016: 391-407.
28 KIM J , LEE J K, LEE K M . Accurate image super-resolution using very deep convolutional networks[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016:1646-1654.
29 KIM J , LEE J K, LEE K M . Deeply-recursive convolutional network for image super-resolution[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1637-1645.
30 TAI Y , YANG J , LIU X , et al . MemNet: a persistent memory network for image restoration[C]// Proceedings of the 2017 IEEE Conference on Computer Vision. Piscataway: IEEE, 2017: 4549-4557.
31 HE K , ZHANG X , REN S , et al . Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1026-1034.
32 SZEGEDY C , IOFFE S , VANHOUCKE V , et al. Inception-v 4, inception-ResNet and the impact of residual connections on learning[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence Palo Alto, CA: AAAI Press, 2017: 4278-4284.
33 LIM B, SON S, KIM H , et al . Enhanced deep residual networks for single image super-resolution[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2017:1132-1140.
34 MARTIN D , FOWLKES C , TAL D, et al . A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]// Proceedings of the 8th IEEE International Conference on Computer Vision. Piscataway: IEEE, 2001: 416-423.
35 BEVILACQUA M , ROUMY A , GUILLEMOT C , et al . Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]// Proceedings of the 2012 British Machine Vision Conference. Durham: BMVA, 2012: No.135.
36 ZEYDE R , ELAD M , PROTTER M . On single image scale-up using sparse-representations[C]// Proceedings of the 2010 International conference on curves and surfaces. Berlin: Springer, 2010: 711-730.
37 YAMANAKA J , KUWASHIMA S , KURITA T . Fast and accurate image super resolution by deep CNN with skip connection and network in network[EB/OL]. [2019-04-05].https://arxiv.org/ftp/arxiv/papers/1707/1707.05425.pdf.
38 MAO X , SHEN C , YANG Y . Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems.Cambridge, MA: MIT Press, 2016: 2810-2818.
39 RAMACHANDRAN P , ZOPH B , LE Q V . Swish: a self-gated activation function[EB/OL]. [2019-04-05].https://arxiv.org/pdf/1710.05941.pdf. |