[1] 张鹏, 徐欣楠, 王洪伟, 等. 基于深度学习的计算机辅助肺癌诊断方法[J]. 计算机辅助设计与图形学学报,2018,30(1):90-99.(ZHANG P,XU X N,WANG H W,et al. Computer-aided lung cancer diagnosis approaches based on deep learning[J]. Journal of Computer-Aided Design and Computer Graphics,2018,30(1):90-99.) [2] WU S, WANG J. Pulmonary nodules 3D detection on serial CT scans[C]//Proceedings of the 3rd Global Congress on Intelligent Systems. Piscataway:IEEE, 2012:257-260. [3] KO J P,NAIDICH D P. Computer-aided diagnosis and the evaluation of lung disease[J]. Journal of Thoracic Imaging,2004,19(3):136-155. [4] DEHMESHKI J,AMIN H,VALDIVIESO M,et al. Segmentation of pulmonary nodules in thoracic CT scans:a region growing approach[J]. IEEE Transactions on Medical Imaging,2008,27(4):467-480. [5] LASSEN B C, JACOBS C, KUHNIGK J M, et al. Robust semi-automatic segmentation of pulmonary subsolid nodules in chest computed tomography scans[J]. Physics in Medicine and Biology,2015,60(3):1307-1323. [6] BAE K T,KIM J S,NA Y H,et al. Pulmonary nodules:automated detection on CT images with morphologic matching algorithm-preliminary results[J]. Radiology, 2005, 236(1):286-293. [7] OKUMURA T,MIWA T,KAKO J I,et al. Automatic detection of lung cancers in chest CT images by variable N-Quoit filter[C]//Proceedings of the 14th International Conference on Pattern Recognition. Piscataway:IEEE, 1998:1671-1673. [8] SIVAKUMAR S,CHANDRASEKAR C. Lung nodule detection using fuzzy clustering and support vector machines[J]. International Journal of Engineering and Technology, 2013, 5(1):179-185. [9] SANTOS A M, DE CARVALHO FILHO A O, SILVA A C, et al. Automatic detection of small lung nodules in 3D CT data using Gaussian mixture models,Tsallis entropy and SVM[J]. Engineering Applications of Artificial Intelligence, 2014, 36(C):27-39. [10] MURPHY K,VAN GINNEKEN B,SCHILHAN A M R,et al. A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbor classification[J]. Medical Image Analysis, 2009, 13(5):757-770. [11] SETIO A A A, CIOMPI F, LITJENS G, et al. Pulmonary nodule detection in CT images:false positive reduction using multi-view convolutional networks[J]. IEEE Transactions on Medical Imaging, 2016, 35(5):1160-1169. [12] SHEN W,ZHOU M,YANG F,et al. Multi-scale convolutional neural networks for lung nodule classification[C]//Proceedings of the 24th International Conference on Information Processing in Medical Imaging, LNCS 9123. Cham:Springer, 2015:588-599. [13] 赵鹏飞, 赵涓涓, 强彦, 等. 多输入卷积神经网络肺结节检测方法研究[J]. 计算机科学,2018,45(1):162-166.(ZHAO P F, ZHAO J J,QIANG Y,et al. Study on detection method of pulmonary nodules with multiple input convolution neural network[J]. Computer Science, 2018, 45(1):162-166.) [14] ALAKWAA W,NASSEF M,BADR A. Lung cancer detection and classification with 3D Convolutional Neural Network (3D-CNN)[J]. International Journal of Advanced Computer Science and Applications, 2017, 8(8):409-417. [15] DOU Q,CHEN H,JIN Y,et al. Automated pulmonary nodule detection via 3D ConvNets with online sample filtering and hybrid-loss residual learning[C]//Proceedings of the 20th International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 10435. Cham:Springer, 2017:630-638. [16] 杨晶晶, 王骞, 宣晓华. 基于深度卷积神经网络算法的肺结节检测模型[J]. 数学建模及其应用,2017,6(4):1-9.(YANG J J,WANG Q,XUAN X H. Computer-aided diagnosis for detecting lung nodules by convolutional neural networks[J]. Mathematical Modeling and Application, 2017, 6(4):1-9.) [17] REN S,HE K,GIRSHICK R,et al. Faster R-CNN:towards realtime object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017, 39(6):1137-1149. [18] RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Interventions,LNCS 9351. Cham:Springer, 2015:234-241. [19] CHOLLET F. Xception:deep learning with depthwise separable convolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:1800-1807. [20] 金弘晟. 肺部CT图像中肺结节自动检测算法的研究与实现[D]. 杭州:浙江大学, 2018:8-13.(JIN H S. Research and implementation of automatic pulmonary nodule detection algorithm in pulmonary CT images[D]. Hangzhou:Zhejiang University,2018:8-13.) [21] MESSAY T,HARDIE R C,TUINSTRA T R. Segmentation of pulmonary nodules in computed tomography using a regression neural network approach and its application to the lung image database consortium and image database resource initiative dataset[J]. Medical Image Analysis, 2015, 22(1):48-62. [22] SA R,OWENS W,WIEGAND R,et al. Intervertebral disc detection in X-ray images using Faster R-CNN[C]//Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway:IEEE, 2017:564-567. [23] 吴晓凤, 张江鑫, 徐欣晨. 基于Faster R-CNN的手势识别算法[J]. 计算机辅助设计与图形学学报,2018,30(3):468-476. (WU X F,ZHANG J X,XU X C. Hand gesture recognition algorithm based on faster R-CNN[J]. Journal of Computer-Aided Design and Computer Graphics, 2018, 30(3):468-476.) [24] HE K M,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [25] 张婷. 基于受限玻尔兹曼机的肺结节检测与诊断模型[D]. 太原:太原理工大学,2018:41-42.(ZHANG T. Research on detection and diagnosis methods for pulmonary nodules based on restricted Boltzmann machine[D]. Taiyuan:Taiyuan University of Technology, 2018:41-42.) [26] ZHU W, LIU C, FAN W, et al. DeepLung:deep 3D dual path nets for automated pulmonary nodule detection and classification[C]//Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway:IEEE, 2018:673-681. [27] Ping An Technology(Shenzhen)Co., Ltd. 3DCNN for lung nodule detection and false positive reduction[EB/OL].[2019-09-10]. https://grand-challenge-public.s3.amazonaws.com/f/challenge/71/8ac994bc-9951-420d-a7e5-21050c5b4132/20180102_081812_PAtech_NDET.pdf. |