Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (7): 2311-2318.DOI: 10.11772/j.issn.1001-9081.2022060924
Special Issue: 多媒体计算与计算机仿真
• Multimedia computing and computer simulation • Previous Articles
Yuanyuan QIN1,2(), Hong ZHANG1,2
Received:
2022-06-24
Revised:
2022-09-02
Accepted:
2022-09-09
Online:
2022-09-23
Published:
2023-07-10
Contact:
Yuanyuan QIN
About author:
QIN Yuanyuan, born in 1998, M. S. candidate. Her research interests include computer vision, medical image processing, machine learning.通讯作者:
秦源源
作者简介:
秦源源(1998—),女,湖南衡阳人,硕士研究生,主要研究方向:计算机视觉、医学图像处理、机器学习;CLC Number:
Yuanyuan QIN, Hong ZHANG. Pulmonary nodule detection algorithm based on attention feature pyramid networks[J]. Journal of Computer Applications, 2023, 43(7): 2311-2318.
秦源源, 张鸿. 基于注意力特征金字塔网络的肺结节检测算法[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2311-2318.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022060924
算法 | 不同假阳性数下的敏感度 | CPM | ||||||
---|---|---|---|---|---|---|---|---|
0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | ||
文献[ | 0.594 | 0.727 | 0.781 | 0.844 | 0.875 | 0.891 | 0.898 | 0.801 |
文献[ | 0.677 | 0.737 | 0.815 | 0.848 | 0.879 | 0.907 | 0.922 | 0.827 |
文献[ | 0.692 | 0.769 | 0.824 | 0.865 | 0.893 | 0.917 | 0.933 | 0.842 |
文献[ | 0.678 | 0.772 | 0.836 | 0.884 | 0.918 | 0.940 | 0.951 | 0.854 |
文献[ | 0.739 | 0.803 | 0.858 | 0.888 | 0.907 | 0.916 | 0.920 | 0.862 |
文献[ | 0.712 | 0.809 | 0.854 | 0.889 | 0.915 | 0.930 | 0.942 | 0.864 |
文献[ | 0.712 | 0.802 | 0.865 | 0.901 | 0.937 | 0.946 | 0.955 | 0.874 |
文献[ | 0.676 | 0.776 | 0.879 | 0.949 | 0.958 | 0.958 | 0.958 | 0.878 |
文献[ | 0.748 | 0.853 | 0.887 | 0.922 | 0.938 | 0.944 | 0.946 | 0.891 |
文献[ | 0.788 | 0.876 | 0.916 | 0.921 | 0.928 | 0.936 | 0.944 | 0.901 |
文献[ | 0.876 | 0.899 | 0.912 | 0.927 | 0.942 | 0.948 | 0.953 | 0.922 |
DPAFPN(本文算法) | 0.827 | 0.878 | 0.903 | 0.914 | 0.936 | 0.947 | 0.951 | 0.908 |
DPAFPN+FPR(本文算法) | 0.846 | 0.911 | 0.924 | 0.952 | 0.963 | 0.968 | 0.968 | 0.933 |
Tab. 1 Comparison of pulmonary nodules detection performance of different algorithms
算法 | 不同假阳性数下的敏感度 | CPM | ||||||
---|---|---|---|---|---|---|---|---|
0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | ||
文献[ | 0.594 | 0.727 | 0.781 | 0.844 | 0.875 | 0.891 | 0.898 | 0.801 |
文献[ | 0.677 | 0.737 | 0.815 | 0.848 | 0.879 | 0.907 | 0.922 | 0.827 |
文献[ | 0.692 | 0.769 | 0.824 | 0.865 | 0.893 | 0.917 | 0.933 | 0.842 |
文献[ | 0.678 | 0.772 | 0.836 | 0.884 | 0.918 | 0.940 | 0.951 | 0.854 |
文献[ | 0.739 | 0.803 | 0.858 | 0.888 | 0.907 | 0.916 | 0.920 | 0.862 |
文献[ | 0.712 | 0.809 | 0.854 | 0.889 | 0.915 | 0.930 | 0.942 | 0.864 |
文献[ | 0.712 | 0.802 | 0.865 | 0.901 | 0.937 | 0.946 | 0.955 | 0.874 |
文献[ | 0.676 | 0.776 | 0.879 | 0.949 | 0.958 | 0.958 | 0.958 | 0.878 |
文献[ | 0.748 | 0.853 | 0.887 | 0.922 | 0.938 | 0.944 | 0.946 | 0.891 |
文献[ | 0.788 | 0.876 | 0.916 | 0.921 | 0.928 | 0.936 | 0.944 | 0.901 |
文献[ | 0.876 | 0.899 | 0.912 | 0.927 | 0.942 | 0.948 | 0.953 | 0.922 |
DPAFPN(本文算法) | 0.827 | 0.878 | 0.903 | 0.914 | 0.936 | 0.947 | 0.951 | 0.908 |
DPAFPN+FPR(本文算法) | 0.846 | 0.911 | 0.924 | 0.952 | 0.963 | 0.968 | 0.968 | 0.933 |
算法 | 结节检出率/% | 敏感度 | ||
---|---|---|---|---|
3~5 mm | 5~10 mm | >10 mm | ||
DPAFPN | 95.6 | 96.4 | 95.7 | 0.960 |
DPAFPN+FPR | 97.0 | 97.1 | 98.2 | 0.974 |
Tab. 2 Detection results of nodules with different sizes
算法 | 结节检出率/% | 敏感度 | ||
---|---|---|---|---|
3~5 mm | 5~10 mm | >10 mm | ||
DPAFPN | 95.6 | 96.4 | 95.7 | 0.960 |
DPAFPN+FPR | 97.0 | 97.1 | 98.2 | 0.974 |
敏感度 | ||
---|---|---|
1 | 0.20 | 0.961 |
0.25 | 0.972 | |
0.30 | 0.960 | |
2 | 0.20 | 0.970 |
0.25 | 0.974 | |
0.30 | 0.968 |
Tab. 3 Comparison of parameters of loss functions
敏感度 | ||
---|---|---|
1 | 0.20 | 0.961 |
0.25 | 0.972 | |
0.30 | 0.960 | |
2 | 0.20 | 0.970 |
0.25 | 0.974 | |
0.30 | 0.968 |
算法 | 平均扫描假阳性数(最佳性能) | 最高敏感度 |
---|---|---|
D_FPN | 27 | 0.932 |
D_FPN+SA | 29 | 0.954 |
D_FPN+CA | 35 | 0.961 |
DPAFPN | 33 | 0.967 |
DPAFPN+FPR | 28 | 0.974 |
Tab. 4 GAM submodule verification
算法 | 平均扫描假阳性数(最佳性能) | 最高敏感度 |
---|---|---|
D_FPN | 27 | 0.932 |
D_FPN+SA | 29 | 0.954 |
D_FPN+CA | 35 | 0.961 |
DPAFPN | 33 | 0.967 |
DPAFPN+FPR | 28 | 0.974 |
1 | 董林佳,强彦,赵涓涓,等.基于三维形状指数的肺结节自动检测方法[J].计算机应用, 2017, 37(11): 3182-3187. |
DONG L J, QIANG Y, ZHAO J J, et al. Automatic detection of pulmonary nodules based on 3D shape index[J]. Journal of Computer Applications, 2017, 37(11): 3182-3187. | |
2 | OKUMURA T, MIWA T, KAKO J I, et al. Automatic detection of lung cancers in chest CT images by variable N-Quoit filter [C]// Proceedings of the 14th International Conference on Pattern Recognition — Volume 2. Piscataway: IEEE, 1998: 1671-1673. |
3 | WU S Y, WANG J F. Pulmonary nodules 3D detection on serial CT scans [C]// Proceedings of the 3rd Global Congress on Intelligent Systems. Piscataway: IEEE, 2012: 257-260. 10.1109/gcis.2012.46 |
4 | LASSEN B C, JACOBS C, KUHNIGK J M, et al. Robust semi-automatic segmentation of pulmonary subsolid nodules in chest computed tomography scans[J]. Physics in Medicine and Biology, 2015, 60(3): No.1307. 10.1088/0031-9155/60/3/1307 |
5 | 高智勇,黄金镇,杜程刚.基于特征金字塔网络的肺结节检测[J].计算机应用, 2020, 40(9): 2571-2576. |
GAO Z Y, HUANG J Z, DU C G. Pulmonary nodule detection based on feature pyramid networks[J]. Journal of Computer Applications, 2020, 40(9): 2571-2576. | |
6 | XIE H T, YANG D B, SUN N N, et al. Automated pulmonary nodule detection in CT images using deep convolutional neural networks[J]. Pattern Recognition, 2019, 85: 109-119. 10.1016/j.patcog.2018.07.031 |
7 | 戚永军,顾军华,张亚娟,等.基于深度混合卷积模型的肺结节检测方法[J].计算机应用, 2020, 40(10): 2904-2909. |
QI Y J, GU J H, ZHANG Y J, et al. Deep mixed convolution model for pulmonary nodule detection[J]. Journal of Computer Applications, 2020, 40(10): 2904-2909. | |
8 | ZHENG S Y, GUO J P, CUI X N, et al. Automatic pulmonary nodule detection in CT scans using convolutional neural networks based on maximum intensity projection[J]. IEEE Transactions on Medical Imaging, 2020, 39(3): 797-805. 10.1109/tmi.2019.2935553 |
9 | ZHU W T, LIU C C, FAN W, et al. DeepLung: deep 3D dual path nets for automated pulmonary nodule detection and classification [C]// Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2018: 673-681. 10.1109/wacv.2018.00079 |
10 | LI J Q, WANG K, YANG D, et al. Deepnodule: multi-task learning of segmentation bootstrap for pulmonary nodule detection [C]// Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2021: 1215-1219. 10.1109/icassp39728.2021.9413825 |
11 | LI Y M, FAN Y. DeepSEED: 3D squeeze-and-excitation encoder-decoder convolutional neural networks for pulmonary nodule detection [C]// Proceedings of the IEEE 17th International Symposium on Biomedical Imaging. Piscataway: IEEE, 2020: 1866-1869. 10.1109/isbi45749.2020.9098317 |
12 | LIU J N, LI J, XUE F Y, et al. Dense attention module for accurate pulmonary nodule detection [C]// Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2021: 1220-1224. 10.1109/icassp39728.2021.9413936 |
13 | 袁金丽,赵琳琳,郭志涛,等.改进U型残差网络用于肺结节检测[J].计算机工程与应用, 2022, 58(13): 195-203. 10.3778/j.issn.1002-8331.2011-0211 |
YUAN J L, ZHAO L L, GUO Z T, et al. Improved U-shaped residual network for lung nodule detection[J]. Computer Engineering and Applications, 2022, 58(13): 195-203. 10.3778/j.issn.1002-8331.2011-0211 | |
14 | 许正玺,张少敏,支力佳,等.三维多尺度嵌套U结构CT影像肺结节检测[J].中国图象图形学报, 2022, 27(3): 797-811. 10.11834/jig.210422 |
XU Z X, ZHANG S M, ZHI L J, et al. Detection of pulmonary nodules in three-dimensional multiscal nested U-structure computed tomography images[J]. Journal of Image and Graphics, 2022, 27(3): 797-811. 10.11834/jig.210422 | |
15 | 张福玲,张少敏,支力佳,等.融合注意力机制和特征金字塔网络的CT图像肺结节检测[J].中国图象图形学报, 2021, 26(9): 2156-2170. 10.11834/jig.210160 |
ZHANG F L, ZHANG S M, ZHI L J, et al. Detection of pulmonary nodules in CT images by combining an attention mechanism and a feature pyramid network[J]. Journal of Image and Graphics, 2021, 26(9): 2156-2170. 10.11834/jig.210160 | |
16 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944. 10.1109/cvpr.2017.106 |
17 | CHEN Y P, LI J N, XIAO H X, et al. Dual path networks [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 4470-4478. |
18 | LIAO F Z, LIANG M, LI Z, et al. Evaluate the malignancy of pulmonary nodules using the 3-D deep leaky noisy-OR network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(11): 3484-3495. 10.1109/tnnls.2019.2892409 |
19 | DOU Q, CHEN H, JIN Y M, et al. Automated pulmonary nodule detection via 3D ConvNets with online sample filtering and hybrid-loss residual learning [C]// Proceedings of the 2017 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 10435. Cham: Springer, 2017: 630-638. |
20 | MEI J, CHENG M M, XU G, et al. SANet: a slice-aware network for pulmonary nodule detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(8): 4374-4387. |
21 | WANG B, QI G J, TANG S, et al. Automated pulmonary nodule detection: high sensitivity with few candidates [C]// Proceedings of the 2018 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 11071. Cham: Springer, 2018: 759-767. |
22 | DING J, LI A X, HU Z Q, et al. Accurate pulmonary nodule detection in computed tomography images using deep convolutional neural networks [C]// Proceedings of the 2017 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 10435. Cham: Springer, 2017: 559-567. |
[1] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[2] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[3] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. |
[4] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[5] | Hong CHEN, Bing QI, Haibo JIN, Cong WU, Li’ang ZHANG. Class-imbalanced traffic abnormal detection based on 1D-CNN and BiGRU [J]. Journal of Computer Applications, 2024, 44(8): 2493-2499. |
[6] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[7] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[8] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[9] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[10] | Yangyi GAO, Tao LEI, Xiaogang DU, Suiyong LI, Yingbo WANG, Chongdan MIN. Crowd counting and locating method based on pixel distance map and four-dimensional dynamic convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2233-2242. |
[11] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[12] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[13] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. |
[14] | Wenliang WEI, Yangping WANG, Biao YUE, Anzheng WANG, Zhe ZHANG. Deep learning model for infrared and visible image fusion based on illumination weight allocation and attention [J]. Journal of Computer Applications, 2024, 44(7): 2183-2191. |
[15] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||