[1] 庄福振, 罗平, 何清, 等. 迁移学习研究进展[J]. 软件学报, 2015,26(1):26-39. (ZHUANG F Z,LUO P,HE Q,et al. Survey on transfer learning research[J]. Journal of Software,2015, 26(1):26-39.) [2] PAN S J, NI X, SUN J T, et al. Cross-domain sentiment classification via spectral feature alignment[C]//Proceedings of the 19th International Conference on World Wide Web. New York:ACM,2010:751-760. [3] QI G J,AGGARWAL C,HUANG T. Towards semantic knowledge propagation from text corpus to Web images[C]//Proceedings of the 20th International Conference on World Wide Web. New York:ACM,2011:297-306. [4] LONG M,WANG J,DING G,et al. Transfer joint matching for unsupervised domain adaptation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2014:1410-1417. [5] XIAO M,GUO Y. Feature space independent semi-supervised domain adaptation via kernel matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(1):54-66. [6] WANG X,SCHNEIDER J. Flexible transfer learning under support and model shift[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2014:1898-1906. [7] KHAN M N A,HEISTERKAMP D R. Adapting instance weights for unsupervised domain adaptation using quadratic mutual information and subspace learning[C]//Proceedings of the 23rd International Conference on Pattern Recognition. Piscataway:IEEE,2016:1560-1565. [8] SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2020-02-22]. https://arxiv.org/pdf/1409.1556.pdf. [9] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [10] SZEGEDY C,VANHOUCKE V,IOFFE S,et al. Rethinking the inception architecture forcomputer vision[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:2818-2826. [11] BENGIO Y, COURVILLE A, VINCENT P. Representation learning:a review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(8):1798-1828. [12] YOSINSKI J,CLUNE J,BENGIO Y,et al. How transferable are features in deep neural networks?[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2014:3320-3328. [13] LONG M,CAO Y,WANG J,et al. Learning transferable features with deep adaptation networks[C]//Proceedings of the 32nd International Conference on Machine Learning. New York:JMLR.org,2015:97-105. [14] PAN S J,TSANG I W,KWOK J T,et al. Domain adaptation via transfercomponent analysis[J]. IEEE Transactions on Neural Networks,2011,22(2):199-210. [15] GRETTON A,SRIPERUMBUDUR B,SEJDINOVIC D,et al. Optimal kernel choice for large-scale two-sample tests[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2012:1205-1213. [16] PAN S J,YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering,2010,22(10):1345-1359. [17] LONG M,WANG J,DING G,et. al. Transfer feature learning with joint distribution adaptation[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway:IEEE,2013:2200-2207. [18] 郑宗生, 胡晨雨, 黄冬梅, 等. 基于迁移学习及气象卫星云图的台风等级分类研究[J]. 遥感技术与应用,2020,35(1):202-210. (ZHENG Z S,HU C Y,HUANG D M,et al. Research on transfer learning methods for classification of typhoon cloud image[J]. Remote Sensing Technology and Application,2020,35(1):202-210.) [19] 皋军, 黄丽莉. 最大局部加权均值差异嵌入[J]. 电子学报, 2013,41(8):1462-1468. (GAO J,HUANG L L. Maximum local weighted mean discrepancy embedding[J]. Acta Electronica Sinica,2013,41(8):1462-1468.) [20] TZENG E, HOFFMAN J, ZHANG N, et al. Deep domain confusion:maximizing for domain invariance[EB/OL].[2020-03-01]. https://arxiv.org/pdf/1412.3474.pdf. [21] CAO X,WIPF D,WEN F,et al. A practical transfer learning algorithm for face verification[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2013:3208-3215. |