[1] ZHU J,HE S,LIU J,et al. Tools and benchmarks for automated log parsing[C]//Proceedings of the IEEE/ACM 41st International Conference on Software Engineering:Software Engineering in Practice. Piscataway:IEEE,2019:121-130. [2] DU M,LI F. Spell:streaming parsing of system event logs[C]//Proceedings of the IEEE 16th International Conference on Data Mining. Piscataway:IEEE,2016:859-864. [3] HE P,ZHU J,ZHENG Z,et al. Drain:an online log parsing approach with fixed depth tree[C]//Proceedings of the 2017 IEEE International Conference on Web Services. Piscataway:IEEE, 2017:33-40. [4] GUO S,LIU Z,CHEN W,et al. Event extraction from streaming system logs[C]//Proceedings of the 2018 International Conference on Information Science and Applications,LNEE 514. Singapore:Springer,2018:465-474. [5] HE S,ZHU J,HE P,el al. Experience report:system log analysis for anomaly detection[C]//Proceedings of the IEEE 27th International Symposium on Software Reliability Engineering. Piscataway:IEEE,2016:207-218. [6] 胡珉, 白雪, 徐伟, 等. 多维时间序列异常检测算法综述[J]. 计算机应用,2020,40(6):1553-1564.(HU M,BAI X,XU W,et al. Review of anomaly detection algorithms for multidimensional time series[J]. Journal of Computer Applications,2020,40(6):1553-1564.) [7] CHEN M,ZHENG A X,LLOYD J,et al. Failure diagnosis using decision trees[C]//Proceedings of the 1st International Conference on Autonomic Computing. Piscataway:IEEE,2004:36-43. [8] LIANG Y,ZHANG Y,XIONG H,el al. Failure prediction in IBM BlueGene/L event logs[C]//Proceedings of the 7th IEEE International Conference on Data Mining. Piscataway:IEEE, 2007:583-588. [9] BODIK P,GOLDSZMIDT M,FOX A,et al. Fingerprinting the datacenter:automated classification of performance crises[C]//Proceedings of the 5th European Conference on Computer Systems. New York:ACM,2010:111-124. [10] 仇媛, 常相茂, 仇倩, 等. 基于长短期记忆网络和滑动窗口的流数据异常检测方法[J]. 计算机应用,2020,40(5):1335-1339. (QIU Y,CHANG X M,QIU Q,et al. Stream data anomaly detection method based on long short-term memory and sliding window[J]. Journal of Computer Applications,2020,40(5):1335-1339.) [11] BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF:identifying density-based local outliers[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. New York:ACM,2000:93-104. [12] XU W,HUANG L,FOX A,et al. Detecting large-scale system problems by mining console logs[C]//Proceedings of the 22nd ACM Symposium on Operating Systems Principles. New York:ACM,2009:117-132. [13] LIN Q,ZHANG H,LOU J,et al. Log clustering based problem identification for online service systems[C]//Proceedings of the 38th International Conference on Software Engineering Companion. New York:ACM,2016:102-111. [14] 李海林, 邬先利. 基于频繁模式发现的时间序列异常检测方法[J]. 计算机应用,2018,38(11):3204-3210.(LI H L,WU X L. Time series anomaly detection method based on frequent pattern discovery[J]. Journal of Computer Applications,2018,38(11):3204-3210.) [15] LIU F T,TING K M,ZHOU Z. Isolation forest[C]//Proceedings of the 8th IEEE International Conference on Data Mining. Piscataway:IEEE,2008:413-422. [16] LOU J,FU Q,YANG S,et al. Mining invariants from console logs for system problem detection[C]//Proceedings of the 2010 USENIX Annual Technical Conference. Berkeley,CA:USENIX Association,2010:1-14. [17] DU M,LI F F,ZHENG G N,et al. DeepLog:anomaly detection and diagnosis from system logs through deep learning[C]//Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. New York:ACM,2017:1285-1298. [18] XIA B, YIN J, XU J, et al. LogGAN:a sequence-based generative adversarial network for anomaly detection based on system logs[C]//Proceedings of the 2019 International Conference on Science of Cyber Security,LNCS 11933. Cham:Springer,2019:61-76. [19] GOODFELLOW I. NIPS 2016 tutorial:generative adversarial networks[EB/OL].[2020-01-11]. https://arxiv.org/pdf/1701.00160.pdf. [20] MIKOLOV T,CHEN K,CORRADO G,et al. Efficient estimation of word representations in vector space[EB/OL].[2020-01-11]. https://arxiv.org/pdf/1301.3781.pdf. |