[1] LI Q,ZHONG Z,LIANG Z,et al. Rail inspection meets big data:methods and trends[C]//Proceedings of the 18th International Conference on Network-Based Information Systems. Piscataway:IEEE,2015:302-308. [2] 张辉, 宋雅男, 王耀南, 等. 钢轨缺陷无损检测与评估技术综述[J]. 仪器仪表学报,2019,40(2):11-25.(ZHANG H,SONG Y N,WANG Y N,et al. Review of rail defect non-destructive testing and evaluation[J]. Chinese Journal of Scientific Instrument,2019, 40(2):11-25.) [3] ZHANG H,JIN X,JONATHAN Q M,et al. Automatic visual detection system of railway surface defects with curvature filter and improved Gaussian mixture model[J]. IEEE Transactions on Instrumentation and Measurement,2018,67(7):1593-1608. [4] MOHAMMADI R,HE Q,GHOFRANI F,et al. Exploring the impact of foot-by-foot track geometry on the occurrence of rail defects[J]. Transportation Research Part C:Emerging Technologies, 2019,102:153-172. [5] KISHORE M B,PARK J W,SONG S J,et al. Characterization of defects on rail surface using eddy current technique[J]. Journal of Mechanical Science and Technology,2019,33(9):4209-4215. [6] ANTIPOV A G,MARKOV A A. Detectability of rail defects by magnetic flux leakage method[J]. Russian Journal of Nondestructive Testing,2019,55(4):277-285. [7] MARKOV A A,MAKSIMOVA E A,ANTIPOV A G. Analyzing the development of rail defects based on results of multichannel periodic testing[J]. Russian Journal of Nondestructive Testing,2019,55(12):875-886. [8] TRINH H,HAAS N,LI Y,et al. Enhanced rail component detection and consolidation for rail track inspection[C]//Proceedings of the 2012 IEEE Workshop on the Applications of Computer Vision. Piscataway:IEEE,2012:289-295. [9] DUBEY A K,JAFFERY Z A. Maximally stable extremal region marking-based railway track surface defect sensing[J]. IEEE Sensors Journal,2016,16(24):9047-9052. [10] MIN Y,XIAO B,DANG J,et al. Real time detection system for rail surface defects based on machine vision[J]. EURASIP Journal on Image and Video Processing,2018,2018:No. 3. [11] ABBAS M A. Improving deep learning performance using random forest HTM cortical learning algorithm[C]//Proceedings of the 1st International Workshop on Deep and Representation Learning. Piscataway:IEEE,2018:13-18. [12] ZHANG X,WANG K,WANG Y,et al. An improved method of rail health monitoring based on CNN and multiple acoustic emission events[C]//Proceedings of the 2017 IEEE International Instrumentation and Measurement Technology Conference. Piscataway:IEEE,2017:1-6. [13] SHANG L,YANG Q,WANG J,et al. Detection of rail surface defects based on CNN image recognition and classification[C]//Proceedings of the 20th International Conference on Advanced Communication Technology. Piscataway:IEEE,2018:45-51. [14] 赵永强, 饶元, 董世鹏, 等. 深度学习目标检测方法综述[J]. 中国图象图形学报,2020,25(4):629-654.(ZHAO Y Q,RAO Y,DONG S P,et al. Survey on deep learning object detection[J]. Journal of Image and Graphics,2020,25(4):629-654.) [15] 袁小翠, 吴禄慎, 陈华伟. 基于Otsu方法的钢轨图像分割[J]. 光学精密工程,2016,24(7):1772-1781.(YUAN X C,WU L S,CHEN H W. Rail image segmentation based on Otsu threshold method[J]. Optics and Precision Engineering,2016,24(7):1772-1781.) [16] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979,9(1):62-66. [17] YU H,LI Q,TAN Y,et al. A coarse-to-fine model for rail surface defect detection[J]. IEEE Transactions on Instrumentation and Measurement,2019,68(3):656-666. [18] 贺振东, 王耀南, 刘洁, 等. 基于背景差分的高铁钢轨表面缺陷图像分割[J]. 仪器仪表学报,2016,37(3):640-649.(HE Z D,WANG Y N,LIU J,et al. Background differencing-based high-speed rail surface defect image segmentation[J]. Chinese Journal of Scientific Instrument,2016,37(3):640-649.) [19] 闵永智, 岳彪, 马宏锋, 等. 基于图像灰度梯度特征的钢轨表面缺陷检测[J]. 仪器仪表学报,2018,39(4):220-229.(MIN Y Z,YUE B,MA H F,et al. Rail surface defects detection based on gray scale gradient characteristics of image[J]. Chinese Journal of Scientific Instrument,2018,39(4):220-229.) [20] GAN J,LI Q,WANG J,et al. A hierarchical extractor-based visual rail surface inspection system[J]. IEEE Sensors Journal, 2017,17(23):7935-7944. [21] PARIS S,DURAND F. A fast approximation of the bilateral filter using a signal processing approach[J]. International Journal of Computer Vision,2009,81(1):24-52. [22] ROSIN P L,ELLIS T. Image difference threshold strategies and shadow detection[C]//Proceedings of the 1995 British Machine Vision Conference. Durham:BMVA Press,1995:347-356. [23] 郭会文, 吴新宇, 苏士娟, 等. 移动相机下基于三维背景估计的运动目标检测[J]. 仪器仪表学报,2017,38(10):2573-2580. (GUO H W,WU X Y,SU S J,et al. 3D background estimation for moving object detection using a single moving camera[J]. Chinese Journal of Scientific Instrument,2017,38(10):2573-2580.) [24] KAPUR J N,SAHOO P K,WONG A K C. A new method for graylevel picture thresholding using the entropy of the histogram[J]. Computer Vision,Graphics,and Image Processing,1985,29(3):273-285. [25] PAPAELIAS M,ROBERTS C,DAVIS C L. A review on nondestructive evaluation of rails:state-of-the-art and future development[J]. Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit,2008,222(4):367-384. [26] YASNOFF W A,MUI J K,BACUS J W. Error measures for scene segmentation[J]. Pattern Recognition,1977,9(4):217-231. [27] LI Q,SHI Z,ZHANG H,et al. A cyber-enabled visual inspection system for rail corrugation[J]. Future Generation Computer Systems,2018,79(Pt 1):374-382. |