[1] WOODS D D,PATTERSON E S,ROTH E M. Can we ever escape from data overload? A cognitive systems diagnosis[J]. Cognition, Technology and Work,2002,4(1):22-36. [2] LUDEWIG M, JANNACH D. Evaluation of session-based recommendation algorithms[J]. User Modeling and User-Adapted Interaction,2018,28(4/5):331-390. [3] SCHAFER J B, KONSTAN J A, RIEDL J. E-commerce recommendation applications[J]. Data Mining and Knowledge Discovery,2001,5(1/2):115-153. [4] JAYAWARDANA C,HEWAGAMAGE K P,HIRAKAWA M. A personalized information environment for digital libraries[J]. Information Technology and Libraries,2001,20(4):185-196. [5] KONSTAN J A,MILLER B N,MALTZ D,et al. GroupLens:applying collaborative filtering to Usenet news[J]. Communications of the ACM,1997,40(3):77-87. [6] JIA Z,YANG Y,GAO W,et al. User-based collaborative filtering for tourist attraction recommendations[C]//Proceedings of the 2015 IEEE International Conference on Computational Intelligence and Communication Technology. Piscataway:IEEE,2015:22-25. [7] RENDLE S,FREUDENTHALER C,GANTNER Z,et al. BPR:Bayesian personalized ranking from implicit feedback[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. Arlington,VA:AUAI,2009:452-461. [8] SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 2001 International Conference on World Wide Web. New York:ACM,2001:285-295. [9] KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer,2009,42(8):30-37. [10] RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing personalized Markov chains for next-basket recommendation[C]//Proceedings of the 19th International Conference on World Wide Web. New York:ACM, 2010:811-820. [11] HIDASI B,QUADRANA M,KARATZOGLOU A,et al. Parallel recurrent neural network architectures for feature-rich sessionbased recommendations[C]//Proceedings of the 10th ACM Conference on Recommender Systems. New York:ACM,2016:241-248. [12] JANNACH D,LUDEWIG M. When recurrent neural networks meet the neighborhood for session-based recommendation[C]//Proceedings of the 11th ACM Conference on Recommender Systems. New York:ACM,2017:306-310. [13] HIDASI B,KARATZOGLOU A,BALTRUNAS L,et al. Sessionbased recommendations with recurrent neural networks[EB/OL].[2020-03-14]. https://arxiv.org/pdf/1511.06939.pdf. [14] 曾义夫, 牟其林, 周乐, 等. 基于图表示学习的会话感知推荐模型[J]. 计算机研究与发展,2020,57(3):590-603.(ZENG Y F,MU Q L,ZHOU L,et al. Graph embedding based session perception model for next-click recommendation[J]. Journal of Computer Research and Development,2020,57(3):590-603.) [15] TAN Y K,XU X,LIU Y. Improved recurrent neural networks for session-based recommendations[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. New York:ACM,2016:17-22. [16] LI J,REN P,CHEN Z,et al. Neural attentive session-based recommendation[C]//Proceedings of the 26th ACM Conference on Information and Knowledge Management. New York:ACM, 2017:1419-1428. [17] LIU Q,ZENG Y,MOKHOSI R,et al. STAMP:short-term attention/memory priority model for session-based recommendation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2018:1831-1839. [18] WU S,TANG Y,ZHU Y,et al. Session-based recommendation with graph neural network[C]//Proceedings of the 33rd AAAI International Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2019:346-353. [19] XU C,ZHAO P,LIU Y,et al. Graph contextualized self-attention network for session-based recommendation[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2019:3940-3946. [20] LI Y,ZEMEL R,BROCKSCHMIDT M,et al. Gated graph sequence neural networks[EB/OL].[2020-03-14]. https://arxiv.org/pdf/1511.05493.pdf. [21] VASWANI A,SHAZEER N,PARMAR N,et al. Attention is all you need[C]//Proceedings of 31st International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2017:6000-6010. |