Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (8): 2439-2447.DOI: 10.11772/j.issn.1001-9081.2022071003
Special Issue: 数据科学与技术
• Data science and technology • Previous Articles Next Articles
Yinying ZHOU1, Yunsheng ZHOU1, Dunhui YU1,2, Jun SUN1()
Received:
2022-07-13
Revised:
2022-11-06
Accepted:
2022-11-11
Online:
2023-01-15
Published:
2023-08-10
Contact:
Jun SUN
About author:
ZHOU Yinying, born in 1998, M. S. candidate. Her research interests include social recommendation.Supported by:
通讯作者:
孙军
作者简介:
周寅莹(1998—),女,湖北随州人,硕士研究生,CCF会员,主要研究方向:社会化推荐基金资助:
CLC Number:
Yinying ZHOU, Yunsheng ZHOU, Dunhui YU, Jun SUN. Adaptive social recommendation based on negative similarity[J]. Journal of Computer Applications, 2023, 43(8): 2439-2447.
周寅莹, 周允升, 余敦辉, 孙军. 基于消极相似性的自适应社会化推荐[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2439-2447.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022071003
数据集 | 用户数 | 项目数 | 评分数 | 关系数 |
---|---|---|---|---|
FilmTrust | 1 508 | 2 071 | 35 497 | 1 853 |
CiaoDVD | 17 615 | 16 121 | 72 665 | 40 133 |
Tab. 2 Statistics of experimental datasets
数据集 | 用户数 | 项目数 | 评分数 | 关系数 |
---|---|---|---|---|
FilmTrust | 1 508 | 2 071 | 35 497 | 1 853 |
CiaoDVD | 17 615 | 16 121 | 72 665 | 40 133 |
参数 | 取值范围 |
---|---|
一致性程度 | 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 |
权重 | 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0 |
消极对象数 | 10, 20, 30, 40, 50, 60 |
理想评分数量区间 | [ |
Tab. 3 Experimental parameter setting
参数 | 取值范围 |
---|---|
一致性程度 | 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 |
权重 | 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0 |
消极对象数 | 10, 20, 30, 40, 50, 60 |
理想评分数量区间 | [ |
数据集 | 评价指标 | ASRNS-C | ASRNS | 降低比例/% |
---|---|---|---|---|
F(全体) | RMSE | 0.801 | 0.786 | 1.87 |
MAE | 0.615 | 0.605 | 1.63 | |
F(冷启动) | RMSE | 0.871 | 0.857 | 1.61 |
MAE | 0.692 | 0.682 | 1.45 | |
C(全体) | RMSE | 0.911 | 0.907 | 0.44 |
MAE | 0.669 | 0.666 | 0.45 | |
C(冷启动) | RMSE | 0.933 | 0.922 | 1.18 |
MAE | 0.681 | 0.674 | 1.03 |
Tab. 4 Comparison of prediction results
数据集 | 评价指标 | ASRNS-C | ASRNS | 降低比例/% |
---|---|---|---|---|
F(全体) | RMSE | 0.801 | 0.786 | 1.87 |
MAE | 0.615 | 0.605 | 1.63 | |
F(冷启动) | RMSE | 0.871 | 0.857 | 1.61 |
MAE | 0.692 | 0.682 | 1.45 | |
C(全体) | RMSE | 0.911 | 0.907 | 0.44 |
MAE | 0.669 | 0.666 | 0.45 | |
C(冷启动) | RMSE | 0.933 | 0.922 | 1.18 |
MAE | 0.681 | 0.674 | 1.03 |
算法 | FilmTrust | CiaoDVD | ||||||
---|---|---|---|---|---|---|---|---|
k=5 | k=10 | k=5 | k=10 | |||||
RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | |
LOCABAL | 0.839 | 0.651 | 0.830 | 0.643 | 1.028 | 0.778 | 1.023 | 0.781 |
SREPS | 0.867 | 0.663 | 0.849 | 0.651 | 1.033 | 0.782 | 1.031 | 0.784 |
HERec | 0.835 | 0.642 | 0.829 | 0.635 | 1.027 | 0.777 | 1.021 | 0.780 |
SREE | 0.815 | 0.621 | 0.811 | 0.620 | 1.005 | 0.752 | 1.001 | 0.757 |
CUNE | 0.825 | 0.631 | 0.820 | 0.627 | 0.988 | 0.727 | 0.981 | 0.722 |
ASRNS | 0.790 | 0.608 | 0.786 | 0.605 | 0.908 | 0.676 | 0.906 | 0.675 |
Tab. 5 Comparison of experimental results of MF-type algorithms on all datasets
算法 | FilmTrust | CiaoDVD | ||||||
---|---|---|---|---|---|---|---|---|
k=5 | k=10 | k=5 | k=10 | |||||
RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | |
LOCABAL | 0.839 | 0.651 | 0.830 | 0.643 | 1.028 | 0.778 | 1.023 | 0.781 |
SREPS | 0.867 | 0.663 | 0.849 | 0.651 | 1.033 | 0.782 | 1.031 | 0.784 |
HERec | 0.835 | 0.642 | 0.829 | 0.635 | 1.027 | 0.777 | 1.021 | 0.780 |
SREE | 0.815 | 0.621 | 0.811 | 0.620 | 1.005 | 0.752 | 1.001 | 0.757 |
CUNE | 0.825 | 0.631 | 0.820 | 0.627 | 0.988 | 0.727 | 0.981 | 0.722 |
ASRNS | 0.790 | 0.608 | 0.786 | 0.605 | 0.908 | 0.676 | 0.906 | 0.675 |
算法 | FilmTrust | CiaoDVD | ||||||
---|---|---|---|---|---|---|---|---|
k=5 | k=10 | k=5 | k=10 | |||||
RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | |
LOCABAL | 0.968 | 0.729 | 0.965 | 0.728 | 1.063 | 0.773 | 1.059 | 0.771 |
SREPS | 0.997 | 0.735 | 0.995 | 0.743 | 1.074 | 0.786 | 1.066 | 0.788 |
HERec | 0.954 | 0.726 | 0.949 | 0.724 | 1.051 | 0.769 | 1.044 | 0.763 |
SREE | 0.919 | 0.683 | 0.911 | 0.680 | 1.020 | 0.770 | 1.008 | 0.766 |
CUNE | 0.923 | 0.725 | 0.912 | 0.715 | 1.020 | 0.761 | 1.006 | 0.753 |
ASRNS | 0.860 | 0.677 | 0.857 | 0.678 | 0.923 | 0.699 | 0.921 | 0.698 |
Tab. 6 Comparison of experimental results of MF-type algorithms on cold start datasets
算法 | FilmTrust | CiaoDVD | ||||||
---|---|---|---|---|---|---|---|---|
k=5 | k=10 | k=5 | k=10 | |||||
RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | |
LOCABAL | 0.968 | 0.729 | 0.965 | 0.728 | 1.063 | 0.773 | 1.059 | 0.771 |
SREPS | 0.997 | 0.735 | 0.995 | 0.743 | 1.074 | 0.786 | 1.066 | 0.788 |
HERec | 0.954 | 0.726 | 0.949 | 0.724 | 1.051 | 0.769 | 1.044 | 0.763 |
SREE | 0.919 | 0.683 | 0.911 | 0.680 | 1.020 | 0.770 | 1.008 | 0.766 |
CUNE | 0.923 | 0.725 | 0.912 | 0.715 | 1.020 | 0.761 | 1.006 | 0.753 |
ASRNS | 0.860 | 0.677 | 0.857 | 0.678 | 0.923 | 0.699 | 0.921 | 0.698 |
算法 | 全体数据集 | 冷启动数据集 | ||||||
---|---|---|---|---|---|---|---|---|
FilmTrust | CiaoDVD | FilmTrust | CiaoDVD | |||||
RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | |
GraphRec | 0.825 | 0.629 | 0.992 | 0.729 | 0.919 | 0.721 | 1.008 | 0.756 |
ConsisRec | 0.807 | 0.614 | 0.959 | 0.692 | 0.891 | 0.709 | 0.971 | 0.749 |
ASRNS(k=10) | 0.786 | 0.605 | 0.906 | 0.675 | 0.857 | 0.678 | 0.921 | 0.698 |
Tab. 7 Comparison of experimental results between ASRNS and GNN-type algorithms on all and cold start datasets
算法 | 全体数据集 | 冷启动数据集 | ||||||
---|---|---|---|---|---|---|---|---|
FilmTrust | CiaoDVD | FilmTrust | CiaoDVD | |||||
RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | |
GraphRec | 0.825 | 0.629 | 0.992 | 0.729 | 0.919 | 0.721 | 1.008 | 0.756 |
ConsisRec | 0.807 | 0.614 | 0.959 | 0.692 | 0.891 | 0.709 | 0.971 | 0.749 |
ASRNS(k=10) | 0.786 | 0.605 | 0.906 | 0.675 | 0.857 | 0.678 | 0.921 | 0.698 |
1 | BEHERA G, NAIN N. Handling data sparsity via item metadata embedding into deep collaborative recommender system[J]. Journal of King Saud University — Computer and Information Sciences, 2022, 34(10 Pt B): 9953-9963. 10.1016/j.jksuci.2021.12.021 |
2 | WANG H. MovieMat: context-aware movie recommendation with matrix factorization by matrix fitting[C]// Proceedings of the 7th International Conference on Computer and Communications. Piscataway: IEEE, 2021: 1642-1645. 10.1109/iccc54389.2021.9674549 |
3 | RANGADURAI K, LIU Y Q, MALREDDY S, et al. NxtPost: user to post recommendations in Facebook groups[C]// Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2022: 3792-3800. 10.1145/3534678.3539042 |
4 | FENG J M, XIA Z Q, FENG X Y, et al. RBPR: a hybrid model for the new user cold start problem in recommender systems[J]. Knowledge-Based Systems, 2021, 214: No.106732. 10.1016/j.knosys.2020.106732 |
5 | LI W T, GAO M, RONG W G, et al. Social recommendation using Euclidean embedding[C]// Proceedings of the 2017 International Joint Conference on Neural Networks. Piscataway: IEEE, 2017: 589-595. 10.1109/ijcnn.2017.7965906 |
6 | ZHANG T W, LI W P, WANG L, et al. Social recommendation algorithm based on stochastic gradient matrix decomposition in social network[J]. Journal of Ambient Intelligence and Humanized Computing, 2020, 11(2): 601-608. 10.1007/s12652-018-1167-7 |
7 | BIN S, SUN G X. Matrix factorization recommendation algorithm based on multiple social relationships[J]. Mathematical Problems in Engineering, 2021, 2021: No.6610645. 10.1155/2021/6610645 |
8 | JAMALI M, ESTER M. A matrix factorization technique with trust propagation for recommendation in social networks[C]// Proceedings of the 4th ACM Conference on Recommender Systems. New York: ACM, 2010: 135-142. 10.1145/1864708.1864736 |
9 | 吴宾,娄铮铮,叶阳东. 联合正则化的矩阵分解推荐算法[J]. 软件学报, 2018, 29(9):2681-2696. |
WU B, LOU Z Z, YE Y D. Co-regularized matrix factorization recommendation algorithm[J]. Journal of Software, 2018, 29(9): 2681-2696. | |
10 | 潘一腾,何发智,于海平. 一种基于信任关系隐含相似度的社会化推荐算法[J]. 计算机学报, 2018, 41(1):65-81. 10.11897/SP.J.1016.2018.00065 |
PAN Y T, HE F Z, YU H P. Social recommendation algorithm using implicit similarity in trust[J]. Chinese Journal of Computers, 2018, 41(1): 65-81. 10.11897/SP.J.1016.2018.00065 | |
11 | TANG J L, HU X, GAO H J, et al. Exploiting local and global social context for recommendation[C]// Proceedings of the 23rd International Joint Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2013: 2712-2718. |
12 | GUO G B, ZHANG J, YORKE-SMITH N. TrustSVD: collaborative filtering with both the explicit and implicit influence of user trust and of item ratings[C]// Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2015: 123-129. 10.1609/aaai.v29i1.9153 |
13 | XIONG F, SHEN W H, CHEN H S, et al. Exploiting implicit influence from information propagation for social recommendation[J]. IEEE Transactions on Cybernetics, 2020, 50(10): 4186-4199. 10.1109/tcyb.2019.2939390 |
14 | MA H, KING L, LYU M R. Learning to recommend with social trust ensemble[C]// Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2009: 203-210. 10.1145/1571941.1571978 |
15 | 田保军,杨浒昀,房建东. 融合信任和基于概率矩阵分解的推荐算法[J]. 计算机应用, 2019, 39(10):2834-2840. 10.11772/j.issn.1001-9081.2019030583 |
TIAN B J, YANG H Y, FANG J D. Recommendation algorithm based on probability matrix factorization and fusing trust[J]. Journal of Computer Applications, 2019, 39(10): 2834-2840. 10.11772/j.issn.1001-9081.2019030583 | |
16 | LIU C Y, ZHOU C, WU J, et al. Social recommendation with an essential preference space[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 346-353. 10.1609/aaai.v32i1.11245 |
17 | CHEN L Y, ZHANG H L, WU J. Integrating dual user network embedding with matrix factorization for social recommender systems[C]// Proceedings of the 2019 International Joint Conference on Neural Networks. Piscataway: IEEE, 2019: 1-8. 10.1109/ijcnn.2019.8851715 |
18 | WANG Y Z, SUN H B, ZHAO Y, et al. A heterogeneous graph embedding framework for location-based social network analysis in smart cities[J]. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2747-2755. |
19 | YU J L, YIN H Z, LI J D, et al. Self-supervised multi-channel hypergraph convolutional network for social recommendation[C]// Proceedings of the 2021 World Wide Web Conference. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2021: 413-424. 10.1145/3442381.3449844 |
20 | YU J L, YIN H Z, GAO M, et al. Socially-aware self-supervised tri-training for recommendation[C]// Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 2084-2092. 10.1145/3447548.3467340 |
21 | LIAO J, ZHOU W, LUO F J, et al. SocialLGN: light graph convolution network for social recommendation[J]. Information Sciences, 2022, 589: 595-607. 10.1016/j.ins.2022.01.001 |
22 | FAN W Q, MA Y, LI Q, et al. Graph neural networks for social recommendation[C]// Proceedings of the 2019 World Wide Web Conference. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2019: 417-426. 10.1145/3308558.3313488 |
23 | YANG L W, LIU Z W, DOU Y T, et al. ConsisRec: enhancing GNN for social recommendation via consistent neighbor aggregation[C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 2141-2145. 10.1145/3404835.3463028 |
24 | PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701-710. 10.1145/2623330.2623732 |
25 | GROVER A, LESKOVEC J. node2vec: Scalable feature learning for networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 855-864. 10.1145/2939672.2939754 |
26 | ZHANG C X, YU L, WANG Y, et al. Collaborative user network embedding for social recommender systems[C]// Proceedings of the 2017 SIAM International Conference on Data Mining. Philadelphia, PA: SIAM, 2017: 381-389. 10.1137/1.9781611974973.43 |
27 | JIANG S, LIANG B, WANG L, et al. TrustEmbed: a framework to predict ratings with trust network[C]// Proceedings of the 37th Chinese Control Conference. Piscataway: IEEE, 2018: 9672-9678. 10.23919/chicc.2018.8482820 |
28 | XU C T, HAN K, GUI F, et al. SimilarMF: a social recommender system using an embedding method[C]// Proceedings of the 5th IEEE International Conference on High Performance Computing and Communications/ 17th IEEE International Conference on Smart City/ 5th IEEE International Conference on Data Science and Systems. Piscataway: IEEE, 2019: 1328-1334. 10.1109/hpcc/smartcity/dss.2019.00185 |
29 | SHI C, HU B B, ZHAO W X, et al. Heterogeneous information network embedding for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(2): 357-370. 10.1109/tkde.2018.2833443 |
30 | 张青博,王斌,崔宁宁,等. 基于注意力机制的规范化矩阵分解推荐算法[J]. 软件学报, 2020, 31(3):778-793. 10.13328/j.cnki.jos.005913 |
ZHANG Q B, WANG B, CUI N N, et al. Attention-based regularized matrix factorization for recommendation[J]. Journal of Software, 2020, 31(3): 778-793. 10.13328/j.cnki.jos.005913 | |
31 | 陈嘉颖,于炯,杨兴耀,等. 考虑用户间消极相似性的排序推荐算法[J]. 计算机工程与设计, 2017, 38(5):1247-1251, 1272. 10.16208/j.issn1000-7024.2017.05.024 |
CHEN J Y, YU J, YANG X Y, et al. Ranking-based recommendation algorithm considering negative similarity between users[J]. Computer Engineering and Design, 2017, 38(5): 1247-1251, 1272. 10.16208/j.issn1000-7024.2017.05.024 |
[1] | Yonggui WANG, Qiwen SHI. Social recommendation by enhanced GNN with heterogeneous relationship [J]. Journal of Computer Applications, 2023, 43(11): 3464-3471. |
[2] | Hangyuan DU, Sicong HAO, Wenjian WANG. Semi-supervised representation learning method combining graph auto-encoder and clustering [J]. Journal of Computer Applications, 2022, 42(9): 2643-2651. |
[3] | Le ZHOU, Tingting DAI, Chun LI, Jun XIE, Boce CHU, Feng LI, Junyi ZHANG, Qiao LIU. Network representation learning model based on node attribute bipartite graph [J]. Journal of Computer Applications, 2022, 42(8): 2311-2318. |
[4] | Jun HU, Zhengkang XU, Li LIU, Fujin ZHONG. Network embedding method based on multi-granularity community information [J]. Journal of Computer Applications, 2022, 42(3): 663-670. |
[5] | Weijian DENG, Xi CHEN. Containerized network embedding algorithm based on time-varying resources [J]. Journal of Computer Applications, 2022, 42(2): 550-556. |
[6] | Yinying ZHOU, Mengyi ZHANG, Dunhui YU, Ming ZHU. Social recommendation combining trust implicit similarity and score similarity [J]. Journal of Computer Applications, 2022, 42(12): 3671-3678. |
[7] | Qi GAO, Na LYU, Jingcheng MIAO. Wireless virtual network embedding algorithm based on load balance [J]. Journal of Computer Applications, 2022, 42(10): 3148-3153. |
[8] | LI Yafang, LIANG Ye, FENG Weiwei, ZU Baokai, KANG Yujian. Deep network embedding method based on community optimization [J]. Journal of Computer Applications, 2021, 41(7): 1956-1963. |
[9] | FAN Wei, WANG Huimin, XING Yan. Auto-encoder based multi-view attributed network representation learning model [J]. Journal of Computer Applications, 2021, 41(4): 1064-1070. |
[10] | REN Kezhou, PENG Furong, GUO Xin, WANG Zhe, ZHANG Xiaojing. Social recommendation based on dynamic integration of social information [J]. Journal of Computer Applications, 2021, 41(10): 2806-2812. |
[11] | LI Xiangkun, JIA Caiyan. Collaborative filtering method fusing overlapping community regularization and implicit feedback [J]. Journal of Computer Applications, 2021, 41(1): 53-59. |
[12] | ZHAO Jihong, WU Doudou, QU Hua, YIN Zhenyu. Survivable virtual network embedding guarantee mechanism based on software defined network [J]. Journal of Computer Applications, 2020, 40(3): 770-776. |
[13] | SUN Heli, HE Liang, HE Fang, SUN Miaomiao, JIA Xiaolin. Network embedding based tenuous subgraph finding [J]. Journal of Computer Applications, 2020, 40(10): 2929-2935. |
[14] | HE Haochen, ZHANG Danhong. Recommendation method based on multidimensional social relationship embedded deep graph neural network [J]. Journal of Computer Applications, 2020, 40(10): 2795-2803. |
[15] | YANG Yanlin, YE Zhonglin, ZHAO Haixing, MENG Lei. Link prediction algorithm based on high-order proximity approximation [J]. Journal of Computer Applications, 2019, 39(8): 2366-2373. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||