[1] GANTI K R,YE F,LEI H. Mobile crowdsensing:current state and future challenges[J]. IEEE Communications Magazine,2011, 49(11):32-39. [2] ZAPPATORE M, LONGO A, BOCHICCHIO M A, et al. A crowdsensing approach for mobile learning in acoustics and noise monitoring[C]//Proceedings of the 31st Annual ACM Symposium on Applied Computing. New York:ACM,2016:219-224. [3] DUCHI J C,JORDAN M I,WAINWRIGHT M J. Local privacy and statistical minimax rates[C]//Proceedings of the 51st Annual Allerton Conference on Communication,Control,and Computing. Piscataway:IEEE,2013:1592-1592. [4] MEHTA K,LIU D G,WRIGHT M. Protecting location privacy in sensor networks against a global eavesdropper[J]. IEEE Transactions on Mobile Computing,2012,11(2):320-336. [5] AGIR B,PAPAIOANNOU T G,NARENDULA R,et al. User-side adaptive protection of location privacy in participatory sensing[J]. GeoInformatica,2014,18(1):165-191. [6] VEGARA-LAURENS I J, MENDEZ D, LABRADOR M A. Privacy, quality of information, and energy consumption in participatory sensing systems[C]//Proceedings of the 2014 IEEE International Conference on Pervasive Computing and Communications. Piscataway:IEEE,2014:199-207. [7] YANG D J,FANG X,XUE G L. Truthful incentive mechanisms for k-anonymity location privacy[C]//Proceedings of the 2013 IEEE International Conference on Computer Communications. Piscataway:IEEE,2013:2994-3002. [8] FAN L Y,XIONG L,SUNDERAM V. Differentially private multidimensional time series release for traffic monitoring[C]//Proceedings of the 27th IFIP Annual Conference on Data and Applications Security and Privacy,LNCS 7964. Berlin:Springer, 2013:33-48. [9] RIBONI D,BETTINI C. Differentially-private release of check-in data for venue recommendation[C]//Proceedings of the 2014 IEEE International Conference on Pervasive Computing and Communications. Piscataway:IEEE,2014:190-198. [10] WANG Z B,LI J X,HU J H,et al. Towards privacy-preserving incentive for mobile crowdsensing under an untrusted platform[C]//Proceedings of the 2019 IEEE International Conference on Computer Communications:Piscataway:IEEE, 2019:2053-2061. [11] GISDAKIS S, GIANNETSOS T, PAPADIMITRATOS P. Security, privacy, and incentive provision for mobile crowd sensing systems[J]. IEEE Internet of Things Journal,2016,3(5):839-853. [12] WANG L Y,ZHANG D Q,YANG D Q,et al. Differential location privacy for sparse mobile crowdsensing[C]//Proceedings of the IEEE 16th International Conference on Data Mining. Piscataway:IEEE,2016:1257-1262. [13] SONG Z H,LI Z,CHEN X. Local differential privacy preserving mechanism for multi-attribute data in mobile crowdsensing with edge computing[C]//Proceedings of the 2019 IEEE International Conference on Smart Internet of Things. Piscataway:IEEE, 2019:283-290. [14] YANG X Y,WANG T,REN X B,et al. Copula-based multidimensional crowdsourced data synthesis and release with local privacy[C]//Proceedings of the 2017 IEEE Global Communications Conference. Piscataway:IEEE,2017:1-6. [15] REN X B,YU C M,YU W R,et al. LoPub:high-dimensional crowdsourced data publication with local differential privacy[J]. IEEE Transactions on Information Forensics and Security,2018, 13(9):2151-2166. [16] YE Q Q,HU H B,MENG X F,et al. PrivKV:key-value data collection with local differential privacy[C]//Proceedings of the 2019 IEEE Symposium on Security and Privacy. Piscataway:IEEE,2019:317-331. [17] 胡煜家, 白光伟, 沈航, 等. 移动群智感知中基于深度强化学习的位置隐私保护策略[J]. 小型微型计算机系统,2019,40(2):287-293. (HU Y J, BAI G W, SHEN H, et al. Deep reinforcement learning based location privacy protection in mobile crowd sensing[J]. Journal of Chinese Computer Systems,2019, 40(2):287-293.) [18] 梁艳, 安健, 胡先智, 等. 移动群智感知中支持隐私保护的动态激励机制[J]. 计算机应用研究,2019,36(11):3404-3409. (LIANG Y,AN J,HU X Z,et al. Dynamic incentive mechanism with privacy-preserving in mobile crowd sensing[J]. Application Research of Computers,2019,36(11):3404-3409.) [19] 王涛春, 金鑫, 吕成梅, 等. 移动群智感知中融合数据的隐私保护方法[J]. 计算机研究与发展,2020,57(11):2337-2347. (WANG T C,JIN X,LYU C M,at al. Privacy preservation method of data aggregation in mobile crowd sensing[J]. Journal of Computer Research and Development,2020,57(11):2337-2347.) [20] 刘慧, 毕仁万, 熊金波, 等. 移动群智感知中基于雾节点协作的感知用户身份隐私保护[J]. 网络与信息安全学报,2019,5(6):75-84.(LIU H,BI R W,XIONG J B,et al. Fog-aided identity privacy protection scheme for sensing users in mobile crowd sensing[J]. Chinese Journal of Network and Information Security,2019,5(6):75-84.) [21] 金鑫, 王涛春, 吕成梅, 等. 移动群智感知中原始数据隐私保护算法[J]. 计算机应用,2020,40(11):3249-3254.(JIN X, WANG T C,LYU C M,et al. Privacy preservation algorithm of original data in mobile crowd sensing[J]. Journal of Computer Applications,2020,40(11):3249-3254.) [22] 熊金波, 马蓉, 牛犇, 等. 移动群智感知中基于用户联盟匹配的隐私保护激励机制[J]. 计算机研究与发展,2018,55(7):1359-1370.(XIONG J B,MA R,NIU B,et al. Privacy protection incentive mechanism based on user-union matching in mobile crowdsensing[J]. Journal of Computer Research and Development,2018,55(7):1359-1370.) [23] KAZEMI L,SHAHABI C. GeoCrowd enabling query answering with spatial crowdsourcing[C]//Proceedings of the 20th International Conference on Advances in Geographic Information Systems. New York:ACM,2012:189-198. |