[1] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2019概要[J]. 中国循环杂志, 2020, 35(9):833-854.(The Writing Committee of the Report on Cardiovascular Health and Diseases in China. Report on cardiovascular health and diseases in China 2019:an updated summary[J]. Chinese Circulation Journal,2020,35(9):833-854.) [2] WANG Y,LI Z,GU H,et al. China stroke statistics 2019:a report from the national center for healthcare quality management in neurological diseases,China national clinical research center for neurological diseases, the Chinese stroke association, national center for chronic and non-communicable disease control and prevention,Chinese center for disease control and prevention and institute for global neuroscience and stroke collaborations[J]. Stroke and Vascular Neurology,2020,5(3):211-239. [3] MATHERS C D,BOERMA T,MA FAT D. Global and regional causes of death[J]. British Medical Bulletin,2009,92:7-32. [4] MAIER O,MENZE B H,VON DER GABLENTZ J,et al. ISLES 2015-a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI[J]. Medical Image Analysis, 2017,35:250-269. [5] RONNEBERGER O,FISCHER P,BROX T. U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham:Springer, 2015:234-241. [6] ZHUANG J. LadderNet:multi-path networks based on U-Net for medical image segmentation[EB/OL].[2020-11-11]. https://arxiv.org/pdf/1810.07810.pdf. [7] JAEGER P F,KOHL S A A,BICKELHAUPT S,et al. Retina U-Net:embarrassingly simple exploitation of segmentation supervision for medical object detection[C]//Proceedings of the 2020 Machine Learning for Health NeurIPS Workshop. New York:JMLR. org,2020:171-183. [8] 王平, 高琛, 朱莉, 等. 基于3D深度残差网络与级联U-Net的缺血性脑卒中病灶分割算法[J]. 计算机应用, 2019, 39(11):3274-3279.(WANG P,GAO C,ZHU L,et al. Segmentation algorithm of ischemic stroke lesion based on 3D deep residual network and cascade U-Ne t[J]. Journal of Computer Applications,2019,39(11):3274-3279.) [9] 贡荣麟, 施俊, 王骏. 面向乳腺超声图像分割的混合监督双通道反馈U-Net[J]. 中国图象图形学报, 2020, 25(10):2206-2217. (GONG R L,SHI J,WANG J. Hybrid supervised dual-channel feedback U-Net for segmentation of breast ultrasound images[J]. Journal of Image and Graphics,2020,25(10):2206-2217.) [10] CHEN L C,PAPANDREOU G,KOKKINOS I,et al. DeepLab:semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848. [11] YU F,KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL].[2020-11-11]. https://arxiv.org/pdf/1511.07122.pdf. [12] CHEN L C,PAPANDREOU G,SCHROFF F,et al. Rethinking atrous convolution for semantic image segmentation[EB/OL].[2020-11-11]. https://arxiv.org/pdf/1706.05587.pdf. [13] SHUAI B, ZUO Z, WANG B, et al. DAG-recurrent neural networks for scene labeling[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:3620-3629. [14] PINHEIRO P O,COLLOBERT R. Recurrent convolutional neural networks for scene labeling[C]//Proceedings of the 31st International Conference on Machine Learning. New York:JMLR. org,2014:82-90. [15] VISIN F,ROMERO A,CHO K,et al. ReSeg:a recurrent neural network-based model for semantic segmentation[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE,2016:426-433. [16] BYEON W,BREUEL T M,RAUE F,et al. Scene labeling with LSTM recurrent neural networks[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:3547-3555. [17] WANG X,GIRSHICK R,GUPTA A,et al. Non-local neural networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:7794-7803. [18] WINZECK S,HAKIM A,MCKINLEY R,et al. ISLES 2016 and 2017-benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI[J]. Frontiers in Neurology,2018, 9:Article No. 679. [19] OKTAY O,SCHLEMPER J,LE FOLGOC L,et al. Attention UNet:learning where to look for the pancreas[EB/OL].[2020-11-11]. https://arxiv.org/pdf/1804.03999.pdf. [20] LEE C-Y,XIE S,GALLAGHER P,et al. Deeply-supervised nets[C]//Proceedings of the 18th International Conference on Artificial Intelligence and Statistics. New York:JMLR. org, 2015:562-570. [21] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [22] VEIT A,WILBER M J,BELONGIE S. Residual networks behave like ensembles of relatively shallow networks[C]//Proceedings of the 2016 30th International Conference on Neural Information Processing Systems. Red Hook:Curran Associates Inc.,2016:550-558 [23] HE K,ZHANG X,REN S,et al. Identity mappings in deep residual networks[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9908. Cham:Springer, 2016:630-645. [24] PINTO A, MCKINLEY R, ALVES V, et al. Stroke lesion outcome prediction based on MRI imaging combined with clinical information[J]. Frontiers in Neurology, 2018, 9:Article No. 1060. [25] JETLEY S,LORD N A,LEE N,et al. Learn to pay attention[EB/OL].[2020-11-11]. https://arxiv.org/pdf/1804.02391.pdf. [26] ISLES. Ischemic stroke lesion segmentation challenge 2017[EB/OL].[2020-11-11]. http://www.isles-challenge.org/ISLES2017/. [27] CHOI Y,KWON Y,PAIK M C,et al. Ischemic stroke lesion segmentation with convolutional neural networks for small data[EB/OL].[2020-11-11]. http://www.isles-challenge.org/ISLES2017/articles/choi.pdf. [28] LUCAS C,HEINRICH M P. 2D multi-scale Res-Net for stroke segmentation[EB/OL].[2020-11-11]. http://www.isles-challenge.org/ISLES2017/articles/lucas.pdf. [29] MOK T C W,CHUNG A C S. Deep adversarial networks for stroke lesion segmentation[EB/OL].[2020-11-11]. http://www.isles-challenge.org/ISLES2017/articles/mok.pdf. [30] MONTEIRO M, OLIVEIRA A L. Fully convolutional neural network for 3D stroke lesion segmentation[EB/OL].[2020-11-11]. http://www.isles-challenge.org/ISLES2017/articles/monteiro.pdf. [31] ROBBEN D,SUETENS P. Dual-scale fully convolutional neural network for final infarct prediction[EB/OL].[2020-11-11]. http://www.isles-challenge.org/ISLES2017/articles/robben.pdf. [32] PISOV M,BELYAEV M,KRIVOV E. Neural networks ensembles for ischemic stroke lesion segmentation[EB/OL].[2020-11-11]. http://www.isles-challenge.org/ISLES2017/articles/pisov.pdf. [33] NIU Y, GONG E, XU J, et al. Abstract WP53:improved prediction of the final infarct from acute stroke neuroimaging using deep learning[J]. Stroke,2018,49(S1):Article No. AWP53. [34] KUMAR A,UPADHYAY N,GHOSAL P,et al. CSNet:a new DeepNet framework for ischemic stroke lesion segmentation[J]. Computer Methods and Programs in Biomedicine,2020,193:Article No. 105524. [35] CORNELIO L K S,DEL CASTILLO M A V,NAVAL P C. UISLES:ischemic stroke lesion segmentation using U-Net[C]//Proceedings of the 2018 SAI Intelligent Systems Conference,AISC 869. Cham:Springer,2018:326-336. |