Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (11): 3376-3384.DOI: 10.11772/j.issn.1001-9081.2020122004
• Frontier and comprehensive applications • Previous Articles Next Articles
Fumin ZOU1,2,3, Sijie LUO1,2,3(), Zhihui CHEN1,2,3, Lyuchao LIAO1,2,3
Received:
2020-12-21
Revised:
2021-05-21
Accepted:
2021-08-03
Online:
2021-11-29
Published:
2021-11-10
Contact:
Sijie LUO
About author:
ZOU Fumin, born in 1976, Ph. D., professor. His research
interests include traffic information processing,mobile application of
wireless broadband networkSupported by:
邹复民1,2,3, 罗思杰1,2,3(), 陈志辉1,2,3, 廖律超1,2,3
通讯作者:
罗思杰
作者简介:
邹复民(1976—),男,湖南隆回人,教授,博士,CCF 会员,主要研究方向:交通信息处理、无线宽带网络移动应用基金资助:
CLC Number:
Fumin ZOU, Sijie LUO, Zhihui CHEN, Lyuchao LIAO. Time-space distribution identification method of taxi shift based on trajectory data[J]. Journal of Computer Applications, 2021, 41(11): 3376-3384.
邹复民, 罗思杰, 陈志辉, 廖律超. 基于轨迹数据的出租车交接班时空分布识别方法[J]. 《计算机应用》唯一官方网站, 2021, 41(11): 3376-3384.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2020122004
序号 | 字段名称 | 描述 | 示例 |
---|---|---|---|
1 | ID | 车辆ID | 29 656 |
2 | Longitude | 经度 | 119.433 256° |
3 | Latitude | 纬度 | 26.763 255 6° |
4 | Speed | 速度 | 39.56 km/h |
5 | Direction | 方向 | 1 |
6 | Time | 时间戳 | 2018-6-12T11:50:26 |
Tab. 1 Attributes of traffic trajectory data
序号 | 字段名称 | 描述 | 示例 |
---|---|---|---|
1 | ID | 车辆ID | 29 656 |
2 | Longitude | 经度 | 119.433 256° |
3 | Latitude | 纬度 | 26.763 255 6° |
4 | Speed | 速度 | 39.56 km/h |
5 | Direction | 方向 | 1 |
6 | Time | 时间戳 | 2018-6-12T11:50:26 |
序号 | 车辆ID | 最佳Eps/m |
---|---|---|
1 | 56 635 | 150 |
2 | 356 154 | 130 |
3 | 12 563 | 140 |
4 | 45 314 | 140 |
5 | 23 305 | 120 |
6 | 30 215 | 130 |
7 | 36 891 | 160 |
8 | 12 045 | 130 |
9 | 33 960 | 110 |
10 | 22 056 | 130 |
Tab. 2 Optimal clustering radius of potential taxi shift locations
序号 | 车辆ID | 最佳Eps/m |
---|---|---|
1 | 56 635 | 150 |
2 | 356 154 | 130 |
3 | 12 563 | 140 |
4 | 45 314 | 140 |
5 | 23 305 | 120 |
6 | 30 215 | 130 |
7 | 36 891 | 160 |
8 | 12 045 | 130 |
9 | 33 960 | 110 |
10 | 22 056 | 130 |
1 | 吴华意,黄蕊,游兰,等.出租车轨迹数据挖掘进展[J].测绘学报,2019,48(11):1341-1356. |
WU H Y, HUANG R, YU L, et al. Research progress in taxi trajectory data mining [J]. Acta of Geodaetica et Cartographica Sinica, 2019, 48(11): 1341-1356. | |
2 | 杨伟,艾廷华.基于车辆轨迹大数据的道路网更新方法研究[J].计算机研究与发展,2016,53(12):2681-2693. 10.7544/issn1000-1239.2016.20160610 |
YANG W, AI T H. A method for road network updating based on vehicle trajectory big data [J]. Journal of Computer Research and Development, 2016, 53(12): 2681-2693. 10.7544/issn1000-1239.2016.20160610 | |
3 | DUAN Z T, YANG Y, ZHANG K, et al. Improved deep hybrid networks for urban traffic flow prediction using trajectory data [J]. IEEE Access, 2018, 6: 31820-31827. 10.1109/access.2018.2845863 |
4 | 蒋新华,廖律超,邹复民.基于浮动车移动轨迹的新增道路自动发现算法[J].计算机应用,2013,33(2):579-582. 10.3724/SP.J.1087.2013.00579 |
JANG X H, LIAO L C, ZOU F M. Automatic detection algorithm for new roads based on trajectory of float cars [J]. Journal of Computer Applications, 2013, 33(2): 579-582. 10.3724/SP.J.1087.2013.00579 | |
5 | LUO X, DONG L, DOU Y, et al. Analysis on spatial-temporal features of taxis’ emissions from big data informed travel patterns: a case of Shanghai China [J]. Journal of Cleaner Production, 2017, 142(Pt 2): 926-935. 10.1016/j.jclepro.2016.05.161 |
6 | YUAN J, ZHENG Y, XIE X. Discovering regions of different functions in a city using human mobility and POIs [C]// Proceedings of the 2012 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2012:186-194. 10.1145/2339530.2339561 |
7 | 李雨梦,王晶妍.聚类分析法确定城市出租车交接班最优地点[J].科协论坛(下半月),2012(10):94-96. 10.3969/j.issn.1007-3973.2012.10.053 |
LI Y M, WANG J Y. Determining the optimized location for taxi shift change using a clustering methodology [J]. Science and Technology Association Forum, 2012(10):94-96. 10.3969/j.issn.1007-3973.2012.10.053 | |
8 | 张小玲.出租车停留行为类型识别研究[D].武汉:华中师范大学,2019:1-63. 10.35745/ecei2019v2.097 |
ZHANG X L. Type information mining of taxi handover stopping behavior [D]. Wuhan: Central China Normal University, 2019: 1-63. 10.35745/ecei2019v2.097 | |
9 | 王晶妍,李雨梦.确定出租车交接班时间[J].科技资讯,2012(21):242. 10.3969/j.issn.1672-3791.2012.21.194 |
WANG J Y, LI Y M. Determining the time for taxi shift change [J]. Science and Technology Information, 2012(21): 242. 10.3969/j.issn.1672-3791.2012.21.194 | |
10 | 孟品超,汤新昌,杨琼,等.出租车交接班问题的数学模型[J].数学的实践与认识,2010,40(24):247-252. |
MENG P C, TANG X C, YANG Q, et al. The mathematical model of taxi shift change [J]. Mathematics in Practice and Theory, 2010, 40(24):247-252. | |
11 | 唐炉亮,段倩,阚子涵,等.出租车交接班行为识别与时空分布研究[J].地球信息科学学报,2017,19(2):167-175. 10.3724/SP.J.1047.2017.00167 |
TANG L L, DUAN Q, KAN Z H, et al. 2017. Study on identification and space-time distribution analysis of taxi shift behavior [J]. Journal of Geo-Information Science, 2017, 19(2): 167-175. 10.3724/SP.J.1047.2017.00167 | |
12 | 孙蕊,于海涛,杜勇.出租车交接班空间分析算法研究[C]//第七届中国智能交通年会优秀论文集——智能交通技术.北京:中国智能交通协会,2012:147-153. |
SUN R, YU H T, DU Y. Spatial analysis algorithm for taxi shift [C]// Proceedings of Excellent Papers of the 2012 7th Annual Conference of ITS China — Intelligent Transportation Technology. Beijing: China Intelligent Transportation Association, 2012: 147-153. | |
13 | 孙蕊,于海涛,杜勇.北京出租汽车交接班时空分布特性研究[J].交通运输系统工程与信息,2014,14(1):221-228. 10.3969/j.issn.1009-6744.2014.01.034 |
SUN R, YU H T, DU Y. Time space distribution characteristics of taxi shift in Beijing [J]. Journal of Transportation Systems Engineering and Information Technology, 2014, 14(1): 221-228. 10.3969/j.issn.1009-6744.2014.01.034 | |
14 | ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise [C]// Proceedings of the 1996 2nd International Conference on Knowledge Discovery and Data Mining. Menlo Park: AAAI Press, 1996: 226-231. 10.1109/icde.1998.655795 |
15 | MAHADEVAN S, REBBA R. Validation of reliability computational models using Bayes networks [J]. Reliability Engineering and System Safety, 2005, 87(2): 223-232. 10.1016/j.ress.2004.05.001 |
16 | 杨伟,艾廷华.众源车辆轨迹加油停留行为探测与加油站点提取[J].测绘学报,2017,46(7):918-927.(YANG W, AI T H. Refueling stop activity detection and gas station extraction using crowd sourcing vehicle trajectory data [J]. Acta Geodaetica et Cartographica Sinica, 46(7): 918-927.). 10.11947/j.AGCS.2017.20160657 |
17 | ROCHA J A M R, TIMES V C, OLIVEIRA G, et al. DB-SMoT: a direction-based spatio-temporal clustering method [C]// Proceedings of the 2010 5th IEEE International Conference on Intelligent Systems. Piscataway: IEEE, 2010: 7-9. 10.1109/is.2010.5548396 |
18 | 陈志辉.融合多维信息的城市出租车充电站智能选址方法研究[D].福州:福建工程学院,2020:1-77. 10.5152/j.aott.2020.01.484 |
CHEN Z H. A data driven urban taxi charging station locating and sizing method [D]. Fuzhou: Fujian University of Technology, 2020: 1-77. 10.5152/j.aott.2020.01.484 | |
19 | 张美润.基于车辆群体轨迹特征的新增道路检测与识别研究[D]. 福州:福建工程学院,2019:1-83. 10.30919/esmm5f706 |
ZHANG M R. Research on detection and recognition of newly emerged roads based on features of the vehicle trajectory [D]. Fuzhou: Fujian University of Technology, 2019: 1-83. 10.30919/esmm5f706 |
[1] | KANG Jun, HUANG Shan, DUAN Zongtao, LI Yixiu. Review of spatio-temporal trajectory sequence pattern mining methods [J]. Journal of Computer Applications, 2021, 41(8): 2379-2385. |
[2] | ZHANG Xinhuan, LIU Hongjie, SHI Junqing, MAO Chengyuan, MENG Guolian. LSTM and artificial neural network for urban bus travel time prediction based on spatiotemporal eigenvectors [J]. Journal of Computer Applications, 2021, 41(3): 875-880. |
[3] | CAO Yu, WANG Cheng, WANG Xin, GAO Yueer. Urban road short-term traffic flow prediction based on spatio-temporal node selection and deep learning [J]. Journal of Computer Applications, 2020, 40(5): 1488-1493. |
[4] | SUN Heli, ZHANG Youyou, YANG Zhou, HE Liang, JIA Xiaolin. Urban reachable region search based on time segment tree [J]. Journal of Computer Applications, 2020, 40(10): 2936-2941. |
[5] | XU Yao, LI Zhuoran, MENG Jinlong, ZHAO Lipo, WEN Jianxin, WANG Guiling. Extraction method of marine lane boundary from exploiting trajectory big data [J]. Journal of Computer Applications, 2019, 39(1): 105-112. |
[6] | ZHENG Zhentao, ZHAO Zhuofeng, WANG Guiling, XU Yao. Ship trajectory extraction method for port parking area identification [J]. Journal of Computer Applications, 2019, 39(1): 113-117. |
[7] | CHEN Hui, JIANG Guifeng, JIANG Guiyuan, WU Jigang. Map matching algorithm based on massive bus trajectory data mining [J]. Journal of Computer Applications, 2018, 38(7): 1923-1928. |
[8] | ZHANG Haitao, ZHOU Huan, ZHANG Guonan. Mining method of trajectory interval pattern based on spatial proximity searching [J]. Journal of Computer Applications, 2018, 38(11): 3326-3331. |
[9] | HUO Zheng, CUI Honglei, HE Ping. k-CS algorithm: trajectory data privacy-preserving based on semantic location protection [J]. Journal of Computer Applications, 2018, 38(1): 182-187. |
[10] | HUO Zheng, WANG Weihong, CAO Yuhui. PTDC:privacy-aware trajectory data collection technology under road network constraint [J]. Journal of Computer Applications, 2017, 37(9): 2567-2571. |
[11] | SHI Lukui, ZHANG Yanru, ZHANG Xin. Trajectory data clustering algorithm based on spatio-temporal pattern [J]. Journal of Computer Applications, 2017, 37(3): 854-859. |
[12] | DENG Jingsong, LUO Yonglong, YU Qingying, CHEN Fulong. Privacy-preserving trajectory data publishing based on non-sensitive information analysis [J]. Journal of Computer Applications, 2017, 37(2): 488-493. |
[13] | WANG Baoquan, JIANG Tonghai, ZHOU Xi, MA Bo, ZHAO Fan. Mining of accompanying vehicle group from trajectory data based on analogous automatic number plate recognition [J]. Journal of Computer Applications, 2017, 37(11): 3064-3068. |
[14] | LYU Shaoqian, MENG Fanrong, YUAN Guan. Trajectory structure-based moving object hotspots discovery [J]. Journal of Computer Applications, 2017, 37(1): 54-59. |
[15] | SUN Dandan, LUO Yonglong, FAN Guoting, GUO Liangmin, ZHENG Xiaoyao. Privacy protection algorithm based on trajectory shape diversity [J]. Journal of Computer Applications, 2016, 36(6): 1544-1551. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||