Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (11): 3385-3393.DOI: 10.11772/j.issn.1001-9081.2020121897
• Frontier and comprehensive applications • Previous Articles Next Articles
Received:
2020-12-04
Revised:
2021-07-28
Accepted:
2021-08-03
Online:
2021-02-10
Published:
2021-11-10
Contact:
Cong WANG
About author:
DING Yi,born in 1980,Ph. D.,associate professor. His research
interests include port operation and optimizationSupported by:
通讯作者:
王聪
作者简介:
丁一(1980—),男,上海人,副教授,博士,主要研究方向:港口运作与优化基金资助:
CLC Number:
Yi DING, Cong WANG. Ship stowage optimization centered on automated terminal[J]. Journal of Computer Applications, 2021, 41(11): 3385-3393.
丁一, 王聪. 以自动化码头为中心的船舶配载优化[J]. 《计算机应用》唯一官方网站, 2021, 41(11): 3385-3393.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2020121897
角度 | 文献来源 | 考虑因素 | 模型 | 方法 |
---|---|---|---|---|
船公司 | 文献[ | 船舶稳性、强度、吃水差和倒箱率 | 无 | 比较研究了四种配载方式 |
文献[ | 翻箱次数和桥吊的工作时间 | 整数规划模型 | 启发式算法和遗传算法 | |
文献[ | 船舶靠泊时间 | 多目标规划模型 | 遗传算法 | |
文献[ | 装船时间以及翻倒箱时间 | 多目标规划模型 | 分支定界 | |
文献[ | 装卸集装箱的时间 | 混合整数规划模型 | 启发式和精确定价算法 | |
文献[ | 航线动态分配 | 回归模型 | 定量回归分析和仿真 | |
文献[ | 翻箱费用和堆栈使用费用 | 混合整数规划模型 | Cplex、遗传和贪婪算法 | |
文献[ | 装船作业时间、岸桥均衡 | 多目标规划模型 | 遗传算法 | |
文献[ | 船舶稳性、倒箱数量 | 0-1规划数学模型 | 改进遗传算法 | |
码头 | 文献[ | 堆场翻箱率、船舶稳性 | 多目标规划模型 | 粒子群算法 |
文献[ | 装船时间 | 无 | 分级堆场堆存策略 | |
文献[ | 翻箱量 | 3种倒箱策略下的提箱顺序模型 | 遗传算法 | |
文献[ | 堆场周转、轮胎吊跨箱区作业和轮胎吊移动 | 多目标优化模型 | 蒙特卡洛树搜索 | |
文献[ | 翻箱量 | 状态转移模型 | 动态规划和遗传算法 | |
文献[ | 翻箱率和配载时间 | 无 | 逻辑算法和配载策略 |
Tab. 1 Comparison of ship stowage considerations, models and methods from different perspectives
角度 | 文献来源 | 考虑因素 | 模型 | 方法 |
---|---|---|---|---|
船公司 | 文献[ | 船舶稳性、强度、吃水差和倒箱率 | 无 | 比较研究了四种配载方式 |
文献[ | 翻箱次数和桥吊的工作时间 | 整数规划模型 | 启发式算法和遗传算法 | |
文献[ | 船舶靠泊时间 | 多目标规划模型 | 遗传算法 | |
文献[ | 装船时间以及翻倒箱时间 | 多目标规划模型 | 分支定界 | |
文献[ | 装卸集装箱的时间 | 混合整数规划模型 | 启发式和精确定价算法 | |
文献[ | 航线动态分配 | 回归模型 | 定量回归分析和仿真 | |
文献[ | 翻箱费用和堆栈使用费用 | 混合整数规划模型 | Cplex、遗传和贪婪算法 | |
文献[ | 装船作业时间、岸桥均衡 | 多目标规划模型 | 遗传算法 | |
文献[ | 船舶稳性、倒箱数量 | 0-1规划数学模型 | 改进遗传算法 | |
码头 | 文献[ | 堆场翻箱率、船舶稳性 | 多目标规划模型 | 粒子群算法 |
文献[ | 装船时间 | 无 | 分级堆场堆存策略 | |
文献[ | 翻箱量 | 3种倒箱策略下的提箱顺序模型 | 遗传算法 | |
文献[ | 堆场周转、轮胎吊跨箱区作业和轮胎吊移动 | 多目标优化模型 | 蒙特卡洛树搜索 | |
文献[ | 翻箱量 | 状态转移模型 | 动态规划和遗传算法 | |
文献[ | 翻箱率和配载时间 | 无 | 逻辑算法和配载策略 |
实例 | 箱量 | 箱区数 | LD | RU | 2D/% | 3D/% |
---|---|---|---|---|---|---|
A1 | 100 | 6 | (1 132,313) | (3 712,703) | 31 | 16 |
A2 | 200 | 9 | (810,237) | (3 613,696) | 11 | 24 |
A3 | 300 | 14 | (721,211) | (3 511,731) | 29 | 26 |
A4 | 400 | 19 | (511,176) | (3 413,652) | 33 | 22 |
A5 | 500 | 23 | (172,116) | (2 891,631) | 21 | 15 |
A6 | 600 | 26 | (121,157) | (3 291,781) | 27 | 17 |
Tab. 2 Data description of real instances
实例 | 箱量 | 箱区数 | LD | RU | 2D/% | 3D/% |
---|---|---|---|---|---|---|
A1 | 100 | 6 | (1 132,313) | (3 712,703) | 31 | 16 |
A2 | 200 | 9 | (810,237) | (3 613,696) | 11 | 24 |
A3 | 300 | 14 | (721,211) | (3 511,731) | 29 | 26 |
A4 | 400 | 19 | (511,176) | (3 413,652) | 33 | 22 |
A5 | 500 | 23 | (172,116) | (2 891,631) | 21 | 15 |
A6 | 600 | 26 | (121,157) | (3 291,781) | 27 | 17 |
实例 | 目标函数 值(/min) | 翻箱 次数 | 不均衡 箱数 | 求解 时间/s | |||||
---|---|---|---|---|---|---|---|---|---|
序号 | 箱量 | Cplex | FSS | Cplex | FSS | Cplex | FSS | Cplex | FSS |
A1 | 100 | 396 | 354 | 11 | 5 | 22 | 19 | 178.1 | 18.7 |
A2 | 200 | 781 | 707 | 19 | 14 | 36 | 34 | 391.5 | 31.3 |
A3 | 300 | 1 151 | 1 091 | 42 | 36 | 47 | 42 | 881.8 | 69.7 |
A4 | 400 | 1 538 | 1 479 | 61 | 57 | 59 | 53 | 1 791.8 | 116.9 |
A5 | 500 | 1 892 | 1 829 | 73 | 66 | 70 | 57 | 2 589.8 | 132.2 |
A6 | 600 | — | 2 218 | — | 83 | — | 59 | — | 161.6 |
Tab. 3 Computational result comparison of different algorithms on real instances
实例 | 目标函数 值(/min) | 翻箱 次数 | 不均衡 箱数 | 求解 时间/s | |||||
---|---|---|---|---|---|---|---|---|---|
序号 | 箱量 | Cplex | FSS | Cplex | FSS | Cplex | FSS | Cplex | FSS |
A1 | 100 | 396 | 354 | 11 | 5 | 22 | 19 | 178.1 | 18.7 |
A2 | 200 | 781 | 707 | 19 | 14 | 36 | 34 | 391.5 | 31.3 |
A3 | 300 | 1 151 | 1 091 | 42 | 36 | 47 | 42 | 881.8 | 69.7 |
A4 | 400 | 1 538 | 1 479 | 61 | 57 | 59 | 53 | 1 791.8 | 116.9 |
A5 | 500 | 1 892 | 1 829 | 73 | 66 | 70 | 57 | 2 589.8 | 132.2 |
A6 | 600 | — | 2 218 | — | 83 | — | 59 | — | 161.6 |
实例 | 目标函数值(/min) | 翻箱次数 | 不均衡箱数 | 求解时间/s | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
序号 | 箱量 | PSO | GA | ACO | FSS | PSO | GA | ACO | FSS | PSO | GA | ACO | FSS | PSO | GA | ACO | FSS |
A1 | 100 | 361 | 348 | 369 | 354 | 6 | 6 | 9 | 5 | 21 | 16 | 22 | 19 | 18.1 | 17.9 | 19.3 | 18.7 |
A2 | 200 | 715 | 713 | 725 | 707 | 16 | 15 | 18 | 14 | 35 | 35 | 38 | 34 | 33.5 | 32.7 | 38.1 | 31.3 |
A3 | 300 | 1 106 | 1 123 | 1 119 | 1 091 | 39 | 41 | 37 | 36 | 45 | 46 | 42 | 42 | 82.3 | 73.8 | 72.6 | 69.7 |
A4 | 400 | 1 493 | 1 486 | 1 497 | 1 479 | 59 | 61 | 65 | 57 | 57 | 56 | 59 | 53 | 131.7 | 128.7 | 133.9 | 116.9 |
A5 | 500 | 1 856 | 1 841 | 1 877 | 1 829 | 69 | 67 | 78 | 66 | 66 | 61 | 71 | 57 | 163.9 | 148.2 | 167.5 | 132.2 |
A6 | 600 | 2 247 | 2 231 | 2 259 | 2 218 | 86 | 85 | 87 | 83 | 69 | 66 | 78 | 59 | 192.3 | 182.5 | 197.6 | 161.6 |
Tab. 4 Optimization result comparison of different algorithms
实例 | 目标函数值(/min) | 翻箱次数 | 不均衡箱数 | 求解时间/s | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
序号 | 箱量 | PSO | GA | ACO | FSS | PSO | GA | ACO | FSS | PSO | GA | ACO | FSS | PSO | GA | ACO | FSS |
A1 | 100 | 361 | 348 | 369 | 354 | 6 | 6 | 9 | 5 | 21 | 16 | 22 | 19 | 18.1 | 17.9 | 19.3 | 18.7 |
A2 | 200 | 715 | 713 | 725 | 707 | 16 | 15 | 18 | 14 | 35 | 35 | 38 | 34 | 33.5 | 32.7 | 38.1 | 31.3 |
A3 | 300 | 1 106 | 1 123 | 1 119 | 1 091 | 39 | 41 | 37 | 36 | 45 | 46 | 42 | 42 | 82.3 | 73.8 | 72.6 | 69.7 |
A4 | 400 | 1 493 | 1 486 | 1 497 | 1 479 | 59 | 61 | 65 | 57 | 57 | 56 | 59 | 53 | 131.7 | 128.7 | 133.9 | 116.9 |
A5 | 500 | 1 856 | 1 841 | 1 877 | 1 829 | 69 | 67 | 78 | 66 | 66 | 61 | 71 | 57 | 163.9 | 148.2 | 167.5 | 132.2 |
A6 | 600 | 2 247 | 2 231 | 2 259 | 2 218 | 86 | 85 | 87 | 83 | 69 | 66 | 78 | 59 | 192.3 | 182.5 | 197.6 | 161.6 |
箱区编号 | 距离 | 箱区编号 | 距离 |
---|---|---|---|
I | 远 | IV | 较近 |
II | 较远 | V | 近 |
III | 中间 |
Tab. 5 Number of block distance
箱区编号 | 距离 | 箱区编号 | 距离 |
---|---|---|---|
I | 远 | IV | 较近 |
II | 较远 | V | 近 |
III | 中间 |
分组序号 | 堆栈比例/% | |
---|---|---|
2D | 3D | |
a | 25 | 10 |
b | 33 | 33 |
c | 50 | 25 |
Tab. 6 Configuration of stacks
分组序号 | 堆栈比例/% | |
---|---|---|
2D | 3D | |
a | 25 | 10 |
b | 33 | 33 |
c | 50 | 25 |
组别 | 目标函数值(/min) | 翻箱次数 | 不均衡箱数 | 求解时间/s | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
实例 | 虚拟 | PSO | GA | ACO | FSS | PSO | GA | ACO | FSS | PSO | GA | ACO | FSS | PSO | GA | ACO | FSS |
A1 | a1~c2 | 360 | 356 | 371 | 347 | 9 | 11 | 13 | 8 | 16 | 12 | 18 | 11 | 21.8 | 21.1 | 22.9 | 20.7 |
A2 | a1~c2 | 713 | 706 | 722 | 702 | 18 | 22 | 25 | 17 | 31 | 28 | 33 | 27 | 37.9 | 36.8 | 39.1 | 36.3 |
A3 | a1~c2 | 1 113 | 1 123 | 1 117 | 1 090 | 44 | 46 | 43 | 39 | 41 | 44 | 42 | 37 | 88.1 | 77.9 | 89.2 | 73.6 |
A4 | a1~c2 | 1 496 | 1 487 | 1 509 | 1 480 | 64 | 65 | 68 | 62 | 51 | 49 | 53 | 46 | 138.3 | 131.2 | 141.5 | 121.8 |
A5 | a1~c2 | 1 860 | 1 845 | 1 876 | 1 832 | 73 | 74 | 79 | 71 | 62 | 57 | 66 | 51 | 171.4 | 162.3 | 181.4 | 141.5 |
A6 | a1~c2 | 2 266 | 2 255 | 2 278 | 2 232 | 89 | 88 | 94 | 85 | 74 | 68 | 79 | 63 | 205.1 | 191.8 | 211.3 | 173.9 |
Tab. 7 Computational results of virtual instances
组别 | 目标函数值(/min) | 翻箱次数 | 不均衡箱数 | 求解时间/s | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
实例 | 虚拟 | PSO | GA | ACO | FSS | PSO | GA | ACO | FSS | PSO | GA | ACO | FSS | PSO | GA | ACO | FSS |
A1 | a1~c2 | 360 | 356 | 371 | 347 | 9 | 11 | 13 | 8 | 16 | 12 | 18 | 11 | 21.8 | 21.1 | 22.9 | 20.7 |
A2 | a1~c2 | 713 | 706 | 722 | 702 | 18 | 22 | 25 | 17 | 31 | 28 | 33 | 27 | 37.9 | 36.8 | 39.1 | 36.3 |
A3 | a1~c2 | 1 113 | 1 123 | 1 117 | 1 090 | 44 | 46 | 43 | 39 | 41 | 44 | 42 | 37 | 88.1 | 77.9 | 89.2 | 73.6 |
A4 | a1~c2 | 1 496 | 1 487 | 1 509 | 1 480 | 64 | 65 | 68 | 62 | 51 | 49 | 53 | 46 | 138.3 | 131.2 | 141.5 | 121.8 |
A5 | a1~c2 | 1 860 | 1 845 | 1 876 | 1 832 | 73 | 74 | 79 | 71 | 62 | 57 | 66 | 51 | 171.4 | 162.3 | 181.4 | 141.5 |
A6 | a1~c2 | 2 266 | 2 255 | 2 278 | 2 232 | 89 | 88 | 94 | 85 | 74 | 68 | 79 | 63 | 205.1 | 191.8 | 211.3 | 173.9 |
1 | 计明军,曲田.集装箱船舶配载策略的比较分析[J].航海技术,2012(1):28-32. 10.3969/j.issn.1006-1738.2012.01.011 |
JI M J, QU T. Comparison and analysis of the ways of container ship stowage [J]. Marine Technology, 2012(1): 28-32. 10.3969/j.issn.1006-1738.2012.01.011 | |
2 | 乐美龙,洪严.考虑桥吊工作时间和翻箱次数的配载[J].系统工程,2014,32(7):87-93. |
YUE M L, HONG Y. Containership stowage considering rehandles and crane working time [J]. Systems Engineering, 2014, 32(7): 87-93. | |
3 | SERBAN D, CARP D. Optimization of container stowage in a yard block using a genetic algorithm [J]. Studies in Informatics and Control, 2016, 25(1): 123-130. 10.24846/v25i1y201613 |
4 | 田维,张煜,程惠敏.船舶实配现实约束下的装箱排序问题研究[J].武汉理工大学学报(交通科学与工程版),2016,40(3):509-513. 10.3963/j.issn.2095-3844.2016.03.024 |
TIAN W, ZHANG Y, CHENG H M. Research on sequencing and bin packing problem with practical vessel stowage constraints [J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2016, 40(3): 509-513. 10.3963/j.issn.2095-3844.2016.03.024 | |
5 | ROBERTI R, PACINO D. A decomposition method for finding optimal container stowage plans [J]. Transportation Science, 2018, 52(6): 1444-1462. 10.1287/trsc.2017.0795 |
6 | WANG D D. Dynamic optimization model of container route loading for international logistics ships [J]. Journal of Coastal Research, 2019, 93(sp1): 1111-1116. 10.2112/si93-161.1 |
7 | 郑斐峰,蒋娟,梅启煌.最小化集装箱运输成本的配载优化[J].计算机科学,2019,46(6):239-245. 10.11896/j.issn.1002-137X.2019.06.036 |
ZHENG F F, JIANG J, MEI Q H. Study on stowage optimization in minimum container transportation cost [J]. Computer Science, 2019, 46(6): 239-245. 10.11896/j.issn.1002-137X.2019.06.036 | |
8 | 黄森佳,姜桂艳,张露.基于集装箱倒箱和岸桥作业均衡的集装箱船配载优化[J].宁波大学学报(理工版),2019,32(4):109-114. 10.3969/j.issn.1001-5132.2019.04.018 |
HUANG S J, JIANG G Y, ZHANG L. Optimization of container ship stowage based on container re-handling and balanced operation of quay crane [J]. Journal of Ningbo University (Natural Science and Engineering Edition), 2019, 32(4): 109-114. 10.3969/j.issn.1001-5132.2019.04.018 | |
9 | 孙俊清,陈忱,刘凤莲.考虑船舶稳定性的多港口集装箱配载问题[J].计算机工程与应用,2012,48(32):236-243. 10.3778/j.issn.1002-8331.1104-0575 |
SUN J Q, CHEN C, LIU F L. On stowage planning for multi-port container transportation based on stability constrain [J]. Computer Engineering and Applications, 2012, 48(32): 236-243. 10.3778/j.issn.1002-8331.1104-0575 | |
10 | 黎明,翟金刚.集装箱装船顺序的多目标整数规划优化模型[J].计算机应用研究,2012,29(10):3636-3639. 10.3969/j.issn.1001-3695.2012.10.009 |
LI M, ZHAI J G. Multi-objective integer programming optimization model for loading sequence of container ship [J]. Application Research of Computers, 2012, 29(10): 3636-3639. 10.3969/j.issn.1001-3695.2012.10.009 | |
11 | 张兆民.基于船舶最少作业时间的集装箱码头操作策略[J].港口科技,2015(3):42-46. 10.3969/j.issn.1673-6826.2015.03.013 |
ZHENG Z M. Strategy of shortest operating time in container terminal [J]. Science and Technology of Ports, 2015(3): 42-46. 10.3969/j.issn.1673-6826.2015.03.013 | |
12 | 祝慧灵,计明军,郭文文,等.基于配载计划的集装箱提箱顺序和倒箱策略优化[J].交通运输系统工程与信息,2016,16(2):191-199. 10.3969/j.issn.1009-6744.2016.02.030 |
ZHU H L, JI M J, GUO W W, et al. Optimization of the container retrieving sequence and rehandling strategy based on stowage plan [J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(2): 191-199. 10.3969/j.issn.1009-6744.2016.02.030 | |
13 | ZHAO N, GUO Y C, XIANG T Y, et al. Container ship stowage based on monte Carlo tree search [J]. Journal of Coastal Research, 2018, 83(sp1): 540-547. 10.2112/si83-090.1 |
14 | 李隋凯,励益韬,孙未未,等.一种自动化集装箱码头出口箱进箱选位算法[J].计算机工程,2019,45(5):272-278,284. 10.19678/j.issn.1000-3428.0050566 |
LI S K, LI Y T, SUN W W, et al. A storage space allocation algorithm for export containers in automated container terminal [J]. Computer Engineering, 2019, 45(5): 272-278, 284. 10.19678/j.issn.1000-3428.0050566 | |
15 | 周宇涛,宋海涛,王吉升,等.集装箱自动化码头配载系统应用[J].水运工程,2019(10):21-25. 10.3969/j.issn.1002-4972.2019.10.004 |
ZHOU Y T, SONG H T, WANG J S, et al. Application of auto-stow system in Qingdao automated container terminal [J]. Port and Waterway Engineering, 2019(10): 21-25. 10.3969/j.issn.1002-4972.2019.10.004 | |
16 | LU Q K, HERMANS T. Modeling grasp type improves learning-based grasp planning [J]. IEEE Robotics and Automation Letters, 2019, 4(2): 784-791. 10.1109/lra.2019.2893410 |
[1] | Wenjie YAN, Dongyue DANG. Broad quantum state tomography model based on adaptive feature extraction [J]. Journal of Computer Applications, 2024, 44(12): 3861-3866. |
[2] | Yifan WANG, Shaofu LIN, Yunjiang LI. Highway free-flow tolling method based on blockchain and zero-knowledge proof [J]. Journal of Computer Applications, 2024, 44(12): 3741-3750. |
[3] | Changjiu HE, Jinghan YANG, Piyu ZHOU, Xinye BIAN, Mingming LYU, Di DONG, Yan FU, Haipeng WANG. Theoretical tandem mass spectrometry prediction method for peptide sequences based on Transformer and gated recurrent unit [J]. Journal of Computer Applications, 2024, 44(12): 3958-3964. |
[4] | . Layered solving method for virtual maintenance posture in narrow aircraft space [J]. Journal of Computer Applications, 0, (): 0-0. |
[5] | . DTOps: Integrated development and operation method for digital twin systems [J]. Journal of Computer Applications, 0, (): 0-0. |
[6] | Zhongyu WANG, Xiaodong QIAN. Optimization of edge connection rules for supply chain network based on improved expectation maximization algorithm [J]. Journal of Computer Applications, 2024, 44(11): 3386-3395. |
[7] | Yu WANG, Zhihui GUAN, Yuanpeng LI. Distributed UAV cluster pursuit decision-making based on trajectory prediction and MADDPG [J]. Journal of Computer Applications, 2024, 44(11): 3623-3628. |
[8] | Xukang KAN, Gefei SHI, Xuerong YANG. ORB-SLAM2 algorithm based on dynamic feature point filtering and optimization of keyframe selection [J]. Journal of Computer Applications, 2024, 44(10): 3185-3190. |
[9] | Tingwei CHEN, Jiacheng ZHANG, Junlu WANG. Random validation blockchain construction for federated learning [J]. Journal of Computer Applications, 2024, 44(9): 2770-2776. |
[10] | Mengyuan HUANG, Kan CHANG, Mingyang LING, Xinjie WEI, Tuanfa QIN. Progressive enhancement algorithm for low-light images based on layer guidance [J]. Journal of Computer Applications, 2024, 44(6): 1911-1919. |
[11] | FU Wujiu, ZHOU Lin, DENG Jianjie, YOU Yong. Recurrence formula for initial value problems of fractional-order autonomous dynamical systems and application [J]. Journal of Computer Applications, 0, (): 0-0. |
[12] | Jun FENG, Jiankang BI, Yiru HUO, Jiakuan LI. PIPNet: lightweight asphalt pavement crack image segmentation network [J]. Journal of Computer Applications, 2024, 44(5): 1520-1526. |
[13] | Han SHEN, Zhongsheng WANG, Zhou ZHOU, Changyuan WANG. Improved DV-Hop localization model based on multi-scenario [J]. Journal of Computer Applications, 2024, 44(4): 1219-1227. |
[14] | Yuanyuan MA, Leilei XIE, Nan DONG, Na LIU. Opinion propagation model considering user initiative and mobility [J]. Journal of Computer Applications, 2024, 44(2): 619-627. |
[15] | . Intelligent Modeling Method for Complex Systems Based on Big Data [J]. Journal of Computer Applications, 0, (): 0-0. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||