Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (11): 3385-3393.DOI: 10.11772/j.issn.1001-9081.2020121897
• Frontier and comprehensive applications • Previous Articles Next Articles
Received:
2020-12-04
Revised:
2021-07-28
Accepted:
2021-08-03
Online:
2021-02-10
Published:
2021-11-10
Contact:
Cong WANG
About author:
DING Yi,born in 1980,Ph. D.,associate professor. His research
interests include port operation and optimizationSupported by:
通讯作者:
王聪
作者简介:
丁一(1980—),男,上海人,副教授,博士,主要研究方向:港口运作与优化基金资助:
CLC Number:
Yi DING, Cong WANG. Ship stowage optimization centered on automated terminal[J]. Journal of Computer Applications, 2021, 41(11): 3385-3393.
丁一, 王聪. 以自动化码头为中心的船舶配载优化[J]. 《计算机应用》唯一官方网站, 2021, 41(11): 3385-3393.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2020121897
角度 | 文献来源 | 考虑因素 | 模型 | 方法 |
---|---|---|---|---|
船公司 | 文献[ | 船舶稳性、强度、吃水差和倒箱率 | 无 | 比较研究了四种配载方式 |
文献[ | 翻箱次数和桥吊的工作时间 | 整数规划模型 | 启发式算法和遗传算法 | |
文献[ | 船舶靠泊时间 | 多目标规划模型 | 遗传算法 | |
文献[ | 装船时间以及翻倒箱时间 | 多目标规划模型 | 分支定界 | |
文献[ | 装卸集装箱的时间 | 混合整数规划模型 | 启发式和精确定价算法 | |
文献[ | 航线动态分配 | 回归模型 | 定量回归分析和仿真 | |
文献[ | 翻箱费用和堆栈使用费用 | 混合整数规划模型 | Cplex、遗传和贪婪算法 | |
文献[ | 装船作业时间、岸桥均衡 | 多目标规划模型 | 遗传算法 | |
文献[ | 船舶稳性、倒箱数量 | 0-1规划数学模型 | 改进遗传算法 | |
码头 | 文献[ | 堆场翻箱率、船舶稳性 | 多目标规划模型 | 粒子群算法 |
文献[ | 装船时间 | 无 | 分级堆场堆存策略 | |
文献[ | 翻箱量 | 3种倒箱策略下的提箱顺序模型 | 遗传算法 | |
文献[ | 堆场周转、轮胎吊跨箱区作业和轮胎吊移动 | 多目标优化模型 | 蒙特卡洛树搜索 | |
文献[ | 翻箱量 | 状态转移模型 | 动态规划和遗传算法 | |
文献[ | 翻箱率和配载时间 | 无 | 逻辑算法和配载策略 |
Tab. 1 Comparison of ship stowage considerations, models and methods from different perspectives
角度 | 文献来源 | 考虑因素 | 模型 | 方法 |
---|---|---|---|---|
船公司 | 文献[ | 船舶稳性、强度、吃水差和倒箱率 | 无 | 比较研究了四种配载方式 |
文献[ | 翻箱次数和桥吊的工作时间 | 整数规划模型 | 启发式算法和遗传算法 | |
文献[ | 船舶靠泊时间 | 多目标规划模型 | 遗传算法 | |
文献[ | 装船时间以及翻倒箱时间 | 多目标规划模型 | 分支定界 | |
文献[ | 装卸集装箱的时间 | 混合整数规划模型 | 启发式和精确定价算法 | |
文献[ | 航线动态分配 | 回归模型 | 定量回归分析和仿真 | |
文献[ | 翻箱费用和堆栈使用费用 | 混合整数规划模型 | Cplex、遗传和贪婪算法 | |
文献[ | 装船作业时间、岸桥均衡 | 多目标规划模型 | 遗传算法 | |
文献[ | 船舶稳性、倒箱数量 | 0-1规划数学模型 | 改进遗传算法 | |
码头 | 文献[ | 堆场翻箱率、船舶稳性 | 多目标规划模型 | 粒子群算法 |
文献[ | 装船时间 | 无 | 分级堆场堆存策略 | |
文献[ | 翻箱量 | 3种倒箱策略下的提箱顺序模型 | 遗传算法 | |
文献[ | 堆场周转、轮胎吊跨箱区作业和轮胎吊移动 | 多目标优化模型 | 蒙特卡洛树搜索 | |
文献[ | 翻箱量 | 状态转移模型 | 动态规划和遗传算法 | |
文献[ | 翻箱率和配载时间 | 无 | 逻辑算法和配载策略 |
实例 | 箱量 | 箱区数 | LD | RU | 2D/% | 3D/% |
---|---|---|---|---|---|---|
A1 | 100 | 6 | (1 132,313) | (3 712,703) | 31 | 16 |
A2 | 200 | 9 | (810,237) | (3 613,696) | 11 | 24 |
A3 | 300 | 14 | (721,211) | (3 511,731) | 29 | 26 |
A4 | 400 | 19 | (511,176) | (3 413,652) | 33 | 22 |
A5 | 500 | 23 | (172,116) | (2 891,631) | 21 | 15 |
A6 | 600 | 26 | (121,157) | (3 291,781) | 27 | 17 |
Tab. 2 Data description of real instances
实例 | 箱量 | 箱区数 | LD | RU | 2D/% | 3D/% |
---|---|---|---|---|---|---|
A1 | 100 | 6 | (1 132,313) | (3 712,703) | 31 | 16 |
A2 | 200 | 9 | (810,237) | (3 613,696) | 11 | 24 |
A3 | 300 | 14 | (721,211) | (3 511,731) | 29 | 26 |
A4 | 400 | 19 | (511,176) | (3 413,652) | 33 | 22 |
A5 | 500 | 23 | (172,116) | (2 891,631) | 21 | 15 |
A6 | 600 | 26 | (121,157) | (3 291,781) | 27 | 17 |
实例 | 目标函数 值(/min) | 翻箱 次数 | 不均衡 箱数 | 求解 时间/s | |||||
---|---|---|---|---|---|---|---|---|---|
序号 | 箱量 | Cplex | FSS | Cplex | FSS | Cplex | FSS | Cplex | FSS |
A1 | 100 | 396 | 354 | 11 | 5 | 22 | 19 | 178.1 | 18.7 |
A2 | 200 | 781 | 707 | 19 | 14 | 36 | 34 | 391.5 | 31.3 |
A3 | 300 | 1 151 | 1 091 | 42 | 36 | 47 | 42 | 881.8 | 69.7 |
A4 | 400 | 1 538 | 1 479 | 61 | 57 | 59 | 53 | 1 791.8 | 116.9 |
A5 | 500 | 1 892 | 1 829 | 73 | 66 | 70 | 57 | 2 589.8 | 132.2 |
A6 | 600 | — | 2 218 | — | 83 | — | 59 | — | 161.6 |
Tab. 3 Computational result comparison of different algorithms on real instances
实例 | 目标函数 值(/min) | 翻箱 次数 | 不均衡 箱数 | 求解 时间/s | |||||
---|---|---|---|---|---|---|---|---|---|
序号 | 箱量 | Cplex | FSS | Cplex | FSS | Cplex | FSS | Cplex | FSS |
A1 | 100 | 396 | 354 | 11 | 5 | 22 | 19 | 178.1 | 18.7 |
A2 | 200 | 781 | 707 | 19 | 14 | 36 | 34 | 391.5 | 31.3 |
A3 | 300 | 1 151 | 1 091 | 42 | 36 | 47 | 42 | 881.8 | 69.7 |
A4 | 400 | 1 538 | 1 479 | 61 | 57 | 59 | 53 | 1 791.8 | 116.9 |
A5 | 500 | 1 892 | 1 829 | 73 | 66 | 70 | 57 | 2 589.8 | 132.2 |
A6 | 600 | — | 2 218 | — | 83 | — | 59 | — | 161.6 |
实例 | 目标函数值(/min) | 翻箱次数 | 不均衡箱数 | 求解时间/s | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
序号 | 箱量 | PSO | GA | ACO | FSS | PSO | GA | ACO | FSS | PSO | GA | ACO | FSS | PSO | GA | ACO | FSS |
A1 | 100 | 361 | 348 | 369 | 354 | 6 | 6 | 9 | 5 | 21 | 16 | 22 | 19 | 18.1 | 17.9 | 19.3 | 18.7 |
A2 | 200 | 715 | 713 | 725 | 707 | 16 | 15 | 18 | 14 | 35 | 35 | 38 | 34 | 33.5 | 32.7 | 38.1 | 31.3 |
A3 | 300 | 1 106 | 1 123 | 1 119 | 1 091 | 39 | 41 | 37 | 36 | 45 | 46 | 42 | 42 | 82.3 | 73.8 | 72.6 | 69.7 |
A4 | 400 | 1 493 | 1 486 | 1 497 | 1 479 | 59 | 61 | 65 | 57 | 57 | 56 | 59 | 53 | 131.7 | 128.7 | 133.9 | 116.9 |
A5 | 500 | 1 856 | 1 841 | 1 877 | 1 829 | 69 | 67 | 78 | 66 | 66 | 61 | 71 | 57 | 163.9 | 148.2 | 167.5 | 132.2 |
A6 | 600 | 2 247 | 2 231 | 2 259 | 2 218 | 86 | 85 | 87 | 83 | 69 | 66 | 78 | 59 | 192.3 | 182.5 | 197.6 | 161.6 |
Tab. 4 Optimization result comparison of different algorithms
实例 | 目标函数值(/min) | 翻箱次数 | 不均衡箱数 | 求解时间/s | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
序号 | 箱量 | PSO | GA | ACO | FSS | PSO | GA | ACO | FSS | PSO | GA | ACO | FSS | PSO | GA | ACO | FSS |
A1 | 100 | 361 | 348 | 369 | 354 | 6 | 6 | 9 | 5 | 21 | 16 | 22 | 19 | 18.1 | 17.9 | 19.3 | 18.7 |
A2 | 200 | 715 | 713 | 725 | 707 | 16 | 15 | 18 | 14 | 35 | 35 | 38 | 34 | 33.5 | 32.7 | 38.1 | 31.3 |
A3 | 300 | 1 106 | 1 123 | 1 119 | 1 091 | 39 | 41 | 37 | 36 | 45 | 46 | 42 | 42 | 82.3 | 73.8 | 72.6 | 69.7 |
A4 | 400 | 1 493 | 1 486 | 1 497 | 1 479 | 59 | 61 | 65 | 57 | 57 | 56 | 59 | 53 | 131.7 | 128.7 | 133.9 | 116.9 |
A5 | 500 | 1 856 | 1 841 | 1 877 | 1 829 | 69 | 67 | 78 | 66 | 66 | 61 | 71 | 57 | 163.9 | 148.2 | 167.5 | 132.2 |
A6 | 600 | 2 247 | 2 231 | 2 259 | 2 218 | 86 | 85 | 87 | 83 | 69 | 66 | 78 | 59 | 192.3 | 182.5 | 197.6 | 161.6 |
箱区编号 | 距离 | 箱区编号 | 距离 |
---|---|---|---|
I | 远 | IV | 较近 |
II | 较远 | V | 近 |
III | 中间 |
Tab. 5 Number of block distance
箱区编号 | 距离 | 箱区编号 | 距离 |
---|---|---|---|
I | 远 | IV | 较近 |
II | 较远 | V | 近 |
III | 中间 |
分组序号 | 堆栈比例/% | |
---|---|---|
2D | 3D | |
a | 25 | 10 |
b | 33 | 33 |
c | 50 | 25 |
Tab. 6 Configuration of stacks
分组序号 | 堆栈比例/% | |
---|---|---|
2D | 3D | |
a | 25 | 10 |
b | 33 | 33 |
c | 50 | 25 |
组别 | 目标函数值(/min) | 翻箱次数 | 不均衡箱数 | 求解时间/s | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
实例 | 虚拟 | PSO | GA | ACO | FSS | PSO | GA | ACO | FSS | PSO | GA | ACO | FSS | PSO | GA | ACO | FSS |
A1 | a1~c2 | 360 | 356 | 371 | 347 | 9 | 11 | 13 | 8 | 16 | 12 | 18 | 11 | 21.8 | 21.1 | 22.9 | 20.7 |
A2 | a1~c2 | 713 | 706 | 722 | 702 | 18 | 22 | 25 | 17 | 31 | 28 | 33 | 27 | 37.9 | 36.8 | 39.1 | 36.3 |
A3 | a1~c2 | 1 113 | 1 123 | 1 117 | 1 090 | 44 | 46 | 43 | 39 | 41 | 44 | 42 | 37 | 88.1 | 77.9 | 89.2 | 73.6 |
A4 | a1~c2 | 1 496 | 1 487 | 1 509 | 1 480 | 64 | 65 | 68 | 62 | 51 | 49 | 53 | 46 | 138.3 | 131.2 | 141.5 | 121.8 |
A5 | a1~c2 | 1 860 | 1 845 | 1 876 | 1 832 | 73 | 74 | 79 | 71 | 62 | 57 | 66 | 51 | 171.4 | 162.3 | 181.4 | 141.5 |
A6 | a1~c2 | 2 266 | 2 255 | 2 278 | 2 232 | 89 | 88 | 94 | 85 | 74 | 68 | 79 | 63 | 205.1 | 191.8 | 211.3 | 173.9 |
Tab. 7 Computational results of virtual instances
组别 | 目标函数值(/min) | 翻箱次数 | 不均衡箱数 | 求解时间/s | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
实例 | 虚拟 | PSO | GA | ACO | FSS | PSO | GA | ACO | FSS | PSO | GA | ACO | FSS | PSO | GA | ACO | FSS |
A1 | a1~c2 | 360 | 356 | 371 | 347 | 9 | 11 | 13 | 8 | 16 | 12 | 18 | 11 | 21.8 | 21.1 | 22.9 | 20.7 |
A2 | a1~c2 | 713 | 706 | 722 | 702 | 18 | 22 | 25 | 17 | 31 | 28 | 33 | 27 | 37.9 | 36.8 | 39.1 | 36.3 |
A3 | a1~c2 | 1 113 | 1 123 | 1 117 | 1 090 | 44 | 46 | 43 | 39 | 41 | 44 | 42 | 37 | 88.1 | 77.9 | 89.2 | 73.6 |
A4 | a1~c2 | 1 496 | 1 487 | 1 509 | 1 480 | 64 | 65 | 68 | 62 | 51 | 49 | 53 | 46 | 138.3 | 131.2 | 141.5 | 121.8 |
A5 | a1~c2 | 1 860 | 1 845 | 1 876 | 1 832 | 73 | 74 | 79 | 71 | 62 | 57 | 66 | 51 | 171.4 | 162.3 | 181.4 | 141.5 |
A6 | a1~c2 | 2 266 | 2 255 | 2 278 | 2 232 | 89 | 88 | 94 | 85 | 74 | 68 | 79 | 63 | 205.1 | 191.8 | 211.3 | 173.9 |
1 | 计明军,曲田.集装箱船舶配载策略的比较分析[J].航海技术,2012(1):28-32. 10.3969/j.issn.1006-1738.2012.01.011 |
JI M J, QU T. Comparison and analysis of the ways of container ship stowage [J]. Marine Technology, 2012(1): 28-32. 10.3969/j.issn.1006-1738.2012.01.011 | |
2 | 乐美龙,洪严.考虑桥吊工作时间和翻箱次数的配载[J].系统工程,2014,32(7):87-93. |
YUE M L, HONG Y. Containership stowage considering rehandles and crane working time [J]. Systems Engineering, 2014, 32(7): 87-93. | |
3 | SERBAN D, CARP D. Optimization of container stowage in a yard block using a genetic algorithm [J]. Studies in Informatics and Control, 2016, 25(1): 123-130. 10.24846/v25i1y201613 |
4 | 田维,张煜,程惠敏.船舶实配现实约束下的装箱排序问题研究[J].武汉理工大学学报(交通科学与工程版),2016,40(3):509-513. 10.3963/j.issn.2095-3844.2016.03.024 |
TIAN W, ZHANG Y, CHENG H M. Research on sequencing and bin packing problem with practical vessel stowage constraints [J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2016, 40(3): 509-513. 10.3963/j.issn.2095-3844.2016.03.024 | |
5 | ROBERTI R, PACINO D. A decomposition method for finding optimal container stowage plans [J]. Transportation Science, 2018, 52(6): 1444-1462. 10.1287/trsc.2017.0795 |
6 | WANG D D. Dynamic optimization model of container route loading for international logistics ships [J]. Journal of Coastal Research, 2019, 93(sp1): 1111-1116. 10.2112/si93-161.1 |
7 | 郑斐峰,蒋娟,梅启煌.最小化集装箱运输成本的配载优化[J].计算机科学,2019,46(6):239-245. 10.11896/j.issn.1002-137X.2019.06.036 |
ZHENG F F, JIANG J, MEI Q H. Study on stowage optimization in minimum container transportation cost [J]. Computer Science, 2019, 46(6): 239-245. 10.11896/j.issn.1002-137X.2019.06.036 | |
8 | 黄森佳,姜桂艳,张露.基于集装箱倒箱和岸桥作业均衡的集装箱船配载优化[J].宁波大学学报(理工版),2019,32(4):109-114. 10.3969/j.issn.1001-5132.2019.04.018 |
HUANG S J, JIANG G Y, ZHANG L. Optimization of container ship stowage based on container re-handling and balanced operation of quay crane [J]. Journal of Ningbo University (Natural Science and Engineering Edition), 2019, 32(4): 109-114. 10.3969/j.issn.1001-5132.2019.04.018 | |
9 | 孙俊清,陈忱,刘凤莲.考虑船舶稳定性的多港口集装箱配载问题[J].计算机工程与应用,2012,48(32):236-243. 10.3778/j.issn.1002-8331.1104-0575 |
SUN J Q, CHEN C, LIU F L. On stowage planning for multi-port container transportation based on stability constrain [J]. Computer Engineering and Applications, 2012, 48(32): 236-243. 10.3778/j.issn.1002-8331.1104-0575 | |
10 | 黎明,翟金刚.集装箱装船顺序的多目标整数规划优化模型[J].计算机应用研究,2012,29(10):3636-3639. 10.3969/j.issn.1001-3695.2012.10.009 |
LI M, ZHAI J G. Multi-objective integer programming optimization model for loading sequence of container ship [J]. Application Research of Computers, 2012, 29(10): 3636-3639. 10.3969/j.issn.1001-3695.2012.10.009 | |
11 | 张兆民.基于船舶最少作业时间的集装箱码头操作策略[J].港口科技,2015(3):42-46. 10.3969/j.issn.1673-6826.2015.03.013 |
ZHENG Z M. Strategy of shortest operating time in container terminal [J]. Science and Technology of Ports, 2015(3): 42-46. 10.3969/j.issn.1673-6826.2015.03.013 | |
12 | 祝慧灵,计明军,郭文文,等.基于配载计划的集装箱提箱顺序和倒箱策略优化[J].交通运输系统工程与信息,2016,16(2):191-199. 10.3969/j.issn.1009-6744.2016.02.030 |
ZHU H L, JI M J, GUO W W, et al. Optimization of the container retrieving sequence and rehandling strategy based on stowage plan [J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(2): 191-199. 10.3969/j.issn.1009-6744.2016.02.030 | |
13 | ZHAO N, GUO Y C, XIANG T Y, et al. Container ship stowage based on monte Carlo tree search [J]. Journal of Coastal Research, 2018, 83(sp1): 540-547. 10.2112/si83-090.1 |
14 | 李隋凯,励益韬,孙未未,等.一种自动化集装箱码头出口箱进箱选位算法[J].计算机工程,2019,45(5):272-278,284. 10.19678/j.issn.1000-3428.0050566 |
LI S K, LI Y T, SUN W W, et al. A storage space allocation algorithm for export containers in automated container terminal [J]. Computer Engineering, 2019, 45(5): 272-278, 284. 10.19678/j.issn.1000-3428.0050566 | |
15 | 周宇涛,宋海涛,王吉升,等.集装箱自动化码头配载系统应用[J].水运工程,2019(10):21-25. 10.3969/j.issn.1002-4972.2019.10.004 |
ZHOU Y T, SONG H T, WANG J S, et al. Application of auto-stow system in Qingdao automated container terminal [J]. Port and Waterway Engineering, 2019(10): 21-25. 10.3969/j.issn.1002-4972.2019.10.004 | |
16 | LU Q K, HERMANS T. Modeling grasp type improves learning-based grasp planning [J]. IEEE Robotics and Automation Letters, 2019, 4(2): 784-791. 10.1109/lra.2019.2893410 |
[1] | WANG Daiwei, XU Gaochao, LI Long. Task allocation strategy in unmanned aerial vehicle-assisted mobile edge computing [J]. Journal of Computer Applications, 2021, 41(10): 2928-2936. |
[2] | TONG Lin, GUAN Zheng. Fuzzy granulation prediction of traffic flow based on improved whale optimization support vector machine [J]. Journal of Computer Applications, 2021, 41(10): 2919-2927. |
[3] | XIAO Qi, YIN Zengshan, GAO Shuang. Extremely dim target search algorithm based on detection and tracking mutual iteration [J]. Journal of Computer Applications, 2021, 41(10): 3017-3024. |
[4] | GONG Ying, HE Yanting, CAO Cejun. Co-evolutionary simulation regarding emergency logistics in major public health risk governance [J]. Journal of Computer Applications, 2021, 41(9): 2754-2760. |
[5] | YAN Haisheng, MA Xinqiang. Feature construction algorithm for multi-target regression via radial basis function [J]. Journal of Computer Applications, 2021, 41(8): 2219-2224. |
[6] | LUO Mingyu, LUO Xiaomeng, ZHU Wenmin, ZHANG Lei, FAN Xiumin. Modeling technology for maintenance posture of virtual human in narrow space of ship [J]. Journal of Computer Applications, 2021, 41(8): 2466-2472. |
[7] | TANG Andi, HAN Tong, XU Dengwu, XIE Lei. Path planning method of unmanned aerial vehicle based on chaos sparrow search algorithm [J]. Journal of Computer Applications, 2021, 41(7): 2128-2136. |
[8] | LI Jin, WANG Feng, YANG Shenyu. Freight routing optimization model and algorithm of battery-swapping electric vehicle [J]. Journal of Computer Applications, 2021, 41(6): 1792-1798. |
[9] | LI Congdong, HUANG Hao, ZHANG Fanshun. Knowledge sharing behavior incentive mechanism for lead users based on evolutionary game [J]. Journal of Computer Applications, 2021, 41(6): 1785-1791. |
[10] | WANG Jianping, WANG Gang, MAO Xiaobin, MA Enqi. Motion control method of two-link manipulator based on deep reinforcement learning [J]. Journal of Computer Applications, 2021, 41(6): 1799-1804. |
[11] | LI Shuyi, HAN Xiaolong. Collaborative scheduling of rail-mounted gantry crane and container truck in hybrid operation mode of rail-water intermodal terminal [J]. Journal of Computer Applications, 2021, 41(5): 1506-1513. |
[12] | LIU Ziyan, MA Shanshan, BAI He. Orthogonal matching pursuit hybrid precoding algorithm based on improved intelligent water drop [J]. Journal of Computer Applications, 2021, 41(5): 1419-1424. |
[13] | LI Yan, CHEN Qiaoping. Internet rumor propagation model considering non-supportive comments [J]. Journal of Computer Applications, 2021, 41(4): 1128-1135. |
[14] | SUN Qichang, MAI Yongfeng, CHEN Xiaojun. Fast calibration algorithm in surgical navigation system based on augmented reality [J]. Journal of Computer Applications, 2021, 41(3): 833-838. |
[15] | JIANG Ning, FANG Jinglong, YANG Qing. Global-local domain adaptive object detection based on single shot multibox detector [J]. Journal of Computer Applications, 2021, 41(2): 517-522. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||