Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (12): 3658-3665.DOI: 10.11772/j.issn.1001-9081.2021010079
• Advanced computing • Previous Articles Next Articles
Xiaohang MA1, Lingxia LIAO2,3(), Zhi LI1,2, Bin QIN4, Han-chieh CHAO3
Received:
2021-01-14
Revised:
2021-05-18
Accepted:
2021-05-21
Online:
2021-12-28
Published:
2021-12-10
Contact:
Lingxia LIAO
About author:
MA Xiaohang, born in 1997, M. S. candidate. His research interests include software defined network, multi-objective optimization.Supported by:
马晓航1, 廖灵霞2,3(), 李智1,2, 秦斌4, 赵涵捷3
通讯作者:
廖灵霞
作者简介:
马晓航(1997—),男,江苏连云港人,硕士研究生,主要研究方向:软件定义网络、多目标优化基金资助:
CLC Number:
Xiaohang MA, Lingxia LIAO, Zhi LI, Bin QIN, Han-chieh CHAO. Multi-objective optimization based on dynamic mixed flow entry timeouts in software defined network[J]. Journal of Computer Applications, 2021, 41(12): 3658-3665.
马晓航, 廖灵霞, 李智, 秦斌, 赵涵捷. 基于动态混合超时的软件定义网络多目标优化[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3658-3665.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021010079
参数名 | 描述 |
---|---|
周期内数据流集合 | |
数集合 | |
数据流 | |
包 | |
周期内某时刻 | |
侦测大象流使用的模型 | |
对数据流 | |
数据流 | |
标记为大象流而预测为老鼠流的流 | |
标记为老鼠流预测为老鼠流的流 | |
周期内通过控制通道的数据量均值 | |
控制通道最大带宽 | |
交换机转发到控制器的数据总量 | |
数据流 | |
数据流 | |
数据流 | |
Tab. 1 Optimization model parameter description
参数名 | 描述 |
---|---|
周期内数据流集合 | |
数集合 | |
数据流 | |
包 | |
周期内某时刻 | |
侦测大象流使用的模型 | |
对数据流 | |
数据流 | |
标记为大象流而预测为老鼠流的流 | |
标记为老鼠流预测为老鼠流的流 | |
周期内通过控制通道的数据量均值 | |
控制通道最大带宽 | |
交换机转发到控制器的数据总量 | |
数据流 | |
数据流 | |
数据流 | |
1 | 董仕. 软件定义网络安全问题研究综述[J]. 计算机科学, 2021, 48(3): 295-306. 10.11896/jsjkx.200300119 |
DONG S. Survey on software defined networks security[J]. Computer Science, 2021, 48(3):295-306. 10.11896/jsjkx.200300119 | |
2 | 樊自甫,姚杰,杨先辉. 基于时延优化的软件定义网络控制层部署策略[J]. 计算机应用, 2018, 38(1):207-211. 10.11772/j.issn.1001-9081.2017071681 |
FAN Z F, YAO J, YANG X H. Controller deployment strategy based on delay optimization in software defined network[J]. Journal of Computer Applications, 2018, 38(1):207- 211. 10.11772/j.issn.1001-9081.2017071681 | |
3 | Open Networking Foundation. OpenFlow switch specification: version1.3.1 (Wire Protocol 0x04): ONF TS-007[EB/OL]. (2012-09-06) [2021-03-20].. |
4 | 向雄,田检. 基于软件定义网络的对等网传输调度优化[J]. 计算机应用, 2020, 40(3):777-782. |
XIANG X, TIAN J. P2P transmission scheduling optimization based on software defined network[J]. Journal of Computer Applications, 2020, 40(3):777-782. | |
5 | 郑鹏,胡成臣,李昊. 基于流量特征的OpenFlow南向接口开销优化技术[J]. 计算机研究与发展, 2018, 55(2):346-357. 10.7544/issn1000-1239.2018.20160743 |
ZHENG P, HU C C, LI H. Reducing the southbound interface overhead for OpenFlow based on the flow volume characteristics[J]. Journal of Computer Research and Development, 2018, 55(2):346-357. 10.7544/issn1000-1239.2018.20160743 | |
6 | HU F, HAO Q, BAO K. A survey on software-defined network and OpenFlow: from concept to implementation[J]. IEEE Communications Surveys and Tutorials, 2014, 16(4):2181-2206. 10.1109/comst.2014.2326417 |
7 | 乔思祎,胡成臣,李昊,等. OpenFlow交换机流表溢出问题的缓解机制[J]. 计算机学报, 2018, 41(9):2003-2015. 10.11897/SP.J.1016.2018.02003 |
QIAO S Y, HU C C, LI H, et al. A mechanism of taming the flow table overflow in OpenFlow switch[J]. Chinese Journal of Computers, 2018, 41(9):2003-2015. 10.11897/SP.J.1016.2018.02003 | |
8 | KIM T, LEE K, LEE J, et al. A dynamic timeout control algorithm in software defined networks[J]. International Journal of Future Computer and Communication, 2014, 3(5):331-336. 10.7763/ijfcc.2014.v3.321 |
9 | 史少平,庄雷,杨思锦. 一种基于预测与动态调整负载因子的SDN流表优化算法[J]. 计算机科学, 2017, 44(1):123-127. 10.11896/j.issn.1002-137X.2017.01.024 |
SHI S P, ZHUANG L, YANG S J. SDN optimization algorithm based on prediction and dynamic load factor[J]. Computer Science, 2017, 44(1):123-127. 10.11896/j.issn.1002-137X.2017.01.024 | |
10 | 刘霞,杨桂芹,邵军花,等. SDN动态停滞超时时间优化算法[J]. 传感器与微系统, 2019, 38(10):118-121. 10.13873/J.1000-9787(2019)10-0118-04 |
LIU X, YANG G Q, SHAO J H, et al. Dynamic timeout optimization algorithm in SDN[J]. Transducer and Microsystem Technologies, 2019, 38(10):118-121. 10.13873/J.1000-9787(2019)10-0118-04 | |
11 | SOODEN B, ABBASI M R. A dynamic hybrid timeout method to secure flow tables against DDoS attacks in SDN[C]// Proceedings of the 1st International Conference on Secure Cyber Computing and Communication. Piscataway: IEEE, 2018:29-34. 10.1109/icsccc.2018.8703307 |
12 | ISYAKU B, KAMAT M B, BAKAR K B ABU, et al. IHTA: dynamic idle-hard timeout allocation algorithm based OpenFlow switch[C]// Proceedings of the IEEE 10th Symposium on Computer Applications and Industrial Electronics. Piscataway: IEEE, 2020:170-175. 10.1109/iscaie47305.2020.9108803 |
13 | 付应辉. 基于SDN的多路径负载均衡算法及流表分配优化算法研究[D]. 合肥:安徽大学, 2017. 10.7666/d.Y3215536 |
FU Y H. Research on multi path load balancing and flowtable distribution optimization based on SDN[D]. Hefei: Anhui University, 2017. 10.7666/d.Y3215536 | |
14 | 唐菀,王敢甫,吴京京,等. SDN数据中心网络基于流表项转换的流表调度优化[J]. 中南民族大学学报(自然科学版), 2017, 36(3):111-117. 10.3969/j.issn.1672-4321.2017.03.024 |
TANG W, WANG G F, WU J J, et al. Flowtable scheduling optimization based on flowentry conversion in SDN-based datacenter networks[J]. Journal of South-Central University for Nationalities (Natural Science Edition), 2017, 36(3):111-117. 10.3969/j.issn.1672-4321.2017.03.024 | |
15 | LIAO L X, CHAO H C, CHEN M Y. Intelligently modeling, detecting, and scheduling elephant flows in software defined energy cloud: a survey[J]. Journal of Parallel and Distributed Computing, 2020, 146: 64-78. 10.1016/j.jpdc.2020.07.008 |
16 | 董仕,李瑞轩,李晓林. 基于软件定义数据中心网络的节能路由算法[J]. 计算机研究与发展, 2015, 52(4):806-812. 10.7544/issn1000-1239.2015.20148419 |
DONG S, LI R X, LI X L. Entry efficient routing algorithm based on software defined data center network[J]. Journal of Computer Research and Development, 2015, 52(4):806-812. 10.7544/issn1000-1239.2015.20148419 | |
17 | TANG Q, ZHANG H, DONG J, et al. Elephant flow detection mechanism in SDN-based data center networks[J]. Scientific Programming, 2020, 2020: No.8888375. 10.1155/2020/8888375 |
18 | 刘奕,李建华,陈玉. 基于蚁群优化的多路径流量调度算法[J]. 电光与控制, 2020, 27(12):6-10, 14. 10.3969/j.issn.1671-637X.2020.12.002 |
LIU Y, LI J H, CHEN Y. A multi-path traffic scheduling algorithm based on ant colony optimization[J]. Electronics Optics & Control, 2020, 27(12):6-10, 14. 10.3969/j.issn.1671-637X.2020.12.002 | |
19 | AL-FARES M, RADHAKRISHNAN S, RAGHAVAN B, et al. Hedera: dynamic flow scheduling for data center networks[C]// Proceedings of the 7th USENIX Symposium on Networked Systems Design and Implementation. Berkeley: USENIX Association, 2010:281-296. |
20 | CURTIS A R, MOGUL J C, TOURRILHES J, et al. DevoFlow: scaling flow management for high-performance networks[C]// Proceedings of the 2011 ACM SIGCOMM Conference. New York: ACM, 2011: 254-265. 10.1145/2018436.2018466 |
21 | 杨力波. 基于机器学习的网络流量识别及其应用研究[D]. 成都:电子科技大学, 2020. 10.30919/esee8c207 |
YANG L B. Research on network traffic identification and its application based on machine learning[D]. Chengdu: University of Electronic Science and Technology of China, 2020. 10.30919/esee8c207 | |
22 | BENSON T, AKELLA A, MALTZ D A. Network traffic characteristics of data centers in the wild[C]// Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement. New York: ACM, 2010: 267-280. 10.1145/1879141.1879175 |
23 | 李善俊,陈淮莉. 基于NSGA II的带时间窗生鲜品配送路径优化[J].上海海事大学学报, 2020, 41(2):58-64. 10.13340/j.jsmu.2020.02.011 |
LI S J, CHEN H L. Optimization of fresh food distribution route with time window based on NSGA Ⅱ[J]. Journal of Shanghai Maritime University, 2020, 41(2):58-64. 10.13340/j.jsmu.2020.02.011 | |
24 | 卢小张,刘伟,陶耀东. 基于NSGA-Ⅱ的嵌入式系统软硬件划分方法[J]. 计算机应用, 2009, 29(1):238-241. 10.3724/sp.j.1087.2009.238 |
LU X Z, LIU W, TAO Y D. Method of HW/SW partitioning based on NSGA-Ⅱ[J]. Journal of Computer Applications, 2009, 29(1):238-241. 10.3724/sp.j.1087.2009.238 | |
25 | 周孔涛,崔建昆,吴鲁超. NSGA-Ⅱ算法在智能飞行器航迹规划中的应用[J]. 农业装备与车辆工程, 2020, 58(10):63-66, 133. 10.3969/j.issn.1673-3142.2020.10.014 |
ZHOU K T, CUI J K, WU L C. Application of NSGA-Ⅱ algorithm in intelligent aircraft path planning[J]. Agricultural Equipment and Vehicle Engineering, 2020, 58(10):63-66, 133. 10.3969/j.issn.1673-3142.2020.10.014 | |
26 | 王蕊,顾清华. 一种求解约束多目标问题的协作进化算法[J]. 控制与决策, 2021, 36(11):2656-2664. 10.1007/s40747-020-00249-x |
WANG R, GU Q H. A collaborative evolutionary algorithm for solving constrained multi-objective problems[J]. Control and Decision, 2021, 36(11):2656-2664. 10.1007/s40747-020-00249-x | |
27 | GALUZIO P P, DE VASCONCELOS SEGUNDO E H, COELHO L D S, et al. MOBOpt — multi-objective Bayesian optimization[J]. SoftwareX, 2020, 12: No.100520. 10.1016/j.softx.2020.100520 |
28 | 江敏. 贝叶斯优化算法在多目标优化问题中的应用[J]. 上海应用技术学院学报(自然科学版), 2012, 12(1):41-44. 10.3969/j.issn.1671-7333.2012.01.011 |
JIANG M. Application of Bayesian optimization algorithm in multiobjective problems[J]. Journal of Shanghai Institute of Technology (Natural Science), 2012, 12(1):41-44. 10.3969/j.issn.1671-7333.2012.01.011 | |
29 | DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197. 10.1109/4235.996017 |
[1] | Lin GAO, Yu ZHOU, Tak Wu KWONG. Evolutionary bi-level adaptive local feature selection [J]. Journal of Computer Applications, 2024, 44(5): 1408-1414. |
[2] | Ye TIAN, Jinjin CHEN, Xingyi ZHANG. Hybrid optimizer combining evolutionary computation and gradient descent for constrained multi-objective optimization [J]. Journal of Computer Applications, 2024, 44(5): 1386-1392. |
[3] | Tao JIANG, Zhenyu LIANG, Ran CHENG, Yaochu JIN. GPU-accelerated evolutionary optimization of multi-objective flow shop scheduling problems [J]. Journal of Computer Applications, 2024, 44(5): 1364-1371. |
[4] | Kaiwen ZHAO, Peng WANG, Xiangrong TONG. Two-stage search-based constrained evolutionary multitasking optimization algorithm [J]. Journal of Computer Applications, 2024, 44(5): 1415-1422. |
[5] | Jianqiang LI, Zhou HE. Hybrid NSGA-Ⅱ for vehicle routing problem with multi-trip pickup and delivery [J]. Journal of Computer Applications, 2024, 44(4): 1187-1194. |
[6] | Yongjian MA, Xuhua SHI, Peiyao WANG. Constrained multi-objective evolutionary algorithm based on two-stage search and dynamic resource allocation [J]. Journal of Computer Applications, 2024, 44(1): 269-277. |
[7] | Saijuan XU, Zhenyu PEI, Jiawei LIN, Genggeng LIU. Constrained multi-objective evolutionary algorithm based on multi-stage search [J]. Journal of Computer Applications, 2023, 43(8): 2345-2351. |
[8] | Chenyang GE, Qinrang LIU, Xue PEI, Shuai WEI, Zhengbin ZHU. Efficient collaborative defense scheme against distributed denial of service attacks in software defined network [J]. Journal of Computer Applications, 2023, 43(8): 2477-2485. |
[9] | Canghong JIN, Yuhua SHAO, Qinfang HE. Long-tail recommendation model based on adaptive group reranking [J]. Journal of Computer Applications, 2023, 43(4): 1122-1128. |
[10] | Junyan LIU, Feibo JIANG, Yubo PENG, Li DONG. Multi-objective optimization model for unmanned aerial vehicles trajectory based on decomposition and trajectory search [J]. Journal of Computer Applications, 2023, 43(12): 3806-3815. |
[11] | Chunfeng LIU, Zheng LI, Jufeng WANG. Multi-objective optimization of minicells in distributed factories [J]. Journal of Computer Applications, 2023, 43(12): 3824-3832. |
[12] | Erchao LI, Shenghui ZHANG. Dynamic multi-objective optimization algorithm based on adaptive prediction of new evaluation index [J]. Journal of Computer Applications, 2023, 43(10): 3178-3187. |
[13] | LI Xingjia, YANG Qiuhui, HONG Mei, PAN Chunxia, LIU Ruihang. Test case prioritization approach based on historical data and multi-objective optimization [J]. Journal of Computer Applications, 2023, 43(1): 221-226. |
[14] | MA Yanfang, ZHANG Wen, LI Zongmin, YAN Fang, GUO Lingyun. Two-echelon location-routing model and algorithm for waste recycling considering obnoxious effect [J]. Journal of Computer Applications, 2023, 43(1): 289-298. |
[15] | Xiangyu ZHANG, Yang YANG, Guohui FENG, Chuan QIN. Reversible data hiding in encrypted image based on multi-objective optimization [J]. Journal of Computer Applications, 2022, 42(6): 1716-1723. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||