Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (12): 3637-3644.DOI: 10.11772/j.issn.1001-9081.2021010090
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Bowen YAO, Biqing ZENG(), Jian CAI, Meirong DING
Received:
2021-01-18
Revised:
2021-04-27
Accepted:
2021-04-29
Online:
2021-12-28
Published:
2021-12-10
Contact:
Biqing ZENG
About author:
YAO Bowen, born in 1997, M. S. candidate. His research interests include natural language processing, relation extraction.Supported by:
通讯作者:
曾碧卿
作者简介:
姚博文(1997—),男,江西赣州人,硕士研究生,CCF会员,主要研究方向:自然语言处理、关系抽取基金资助:
CLC Number:
Bowen YAO, Biqing ZENG, Jian CAI, Meirong DING. Chinese character relation extraction model based on pre-training and multi-level information[J]. Journal of Computer Applications, 2021, 41(12): 3637-3644.
姚博文, 曾碧卿, 蔡剑, 丁美荣. 基于预训练和多层次信息的中文人物关系抽取模型[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3637-3644.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021010090
参数描述 | 值 |
---|---|
批次大小 | 32 |
文本最大长度 | 85 |
学习率 | 5E-5 |
训练轮数 | 10 |
丢弃率 | 0.3 |
BiLSTM隐藏维度 | 768 |
BiLSTM层数 | 2 |
邻近词窗口长度 | 1 |
Tab. 1 Hyperparameter setting
参数描述 | 值 |
---|---|
批次大小 | 32 |
文本最大长度 | 85 |
学习率 | 5E-5 |
训练轮数 | 10 |
丢弃率 | 0.3 |
BiLSTM隐藏维度 | 768 |
BiLSTM层数 | 2 |
邻近词窗口长度 | 1 |
实验环境 | 配置 |
---|---|
GPU | Tesla T4 |
操作系统 | Windows 10 |
开发语言 | Python3.6 |
深度学习框架 | Pytorch1.7 |
Tab. 2 Experiment environment
实验环境 | 配置 |
---|---|
GPU | Tesla T4 |
操作系统 | Windows 10 |
开发语言 | Python3.6 |
深度学习框架 | Pytorch1.7 |
模型 | 嵌入维度 | 精度/% | 召回率/% | F1值% |
---|---|---|---|---|
CCREPMI-BERT | 768 | 81.5 | 82.3 | 81.9 |
CCREPMI-BERT-wwm | 768 | 79.0 | 79.7 | 79.3 |
CCREPMI-ERNIE | 768 | 79.3 | 80.0 | 79.6 |
Tab. 3 Result comparison of different pre-trained models
模型 | 嵌入维度 | 精度/% | 召回率/% | F1值% |
---|---|---|---|---|
CCREPMI-BERT | 768 | 81.5 | 82.3 | 81.9 |
CCREPMI-BERT-wwm | 768 | 79.0 | 79.7 | 79.3 |
CCREPMI-ERNIE | 768 | 79.3 | 80.0 | 79.6 |
模型类别 | 模型 | 精度 | 召回率 | F1值 |
---|---|---|---|---|
基准模型 | CNN | 45.3 | 44.9 | 45.1 |
CRCNN | 52.1 | 46.1 | 48.9 | |
BiLSTM-Att | 58.3 | 57.6 | 57.9 | |
BERT-based | BERT | 72.5 | 73.7 | 73.0 |
BERT-LSTM | 73.3 | 74.3 | 73.7 | |
RBERT | 81.0 | 81.5 | 81.2 | |
本文模型 | CCREPMI-S | 80.6 | 81.2 | 80.6 |
CCREPMI-G | 81.1 | 81.9 | 81.5 | |
CCREPMI | 81.5 | 82.3 | 81.9 |
Tab. 4 Performance comparison of different models
模型类别 | 模型 | 精度 | 召回率 | F1值 |
---|---|---|---|---|
基准模型 | CNN | 45.3 | 44.9 | 45.1 |
CRCNN | 52.1 | 46.1 | 48.9 | |
BiLSTM-Att | 58.3 | 57.6 | 57.9 | |
BERT-based | BERT | 72.5 | 73.7 | 73.0 |
BERT-LSTM | 73.3 | 74.3 | 73.7 | |
RBERT | 81.0 | 81.5 | 81.2 | |
本文模型 | CCREPMI-S | 80.6 | 81.2 | 80.6 |
CCREPMI-G | 81.1 | 81.9 | 81.5 | |
CCREPMI | 81.5 | 82.3 | 81.9 |
模型 | F1值 |
---|---|
CNN | 78.9 |
MVRNN | 79.1 |
FCM | 80.6 |
CCREPMI | 81.2 |
Tab. 5 Results comparison of different models on English dataset SemEval2010-task8
模型 | F1值 |
---|---|
CNN | 78.9 |
MVRNN | 79.1 |
FCM | 80.6 |
CCREPMI | 81.2 |
1 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg, PA: Association for Computational Linguistics, 2019: 4171-4186. 10.18653/v1/n19-1423 |
2 | RADFORD A, NARASIMHAN K, SALIMANS T.et al. Improving language understanding by generative pre-training[EB/OL]. [2020-09-07].. |
3 | SOCHER R, HUVAL B, MANNING C D, et al. Semantic compositionality through recursive matrix-vector spaces[C]// Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Stroudsburg, PA: Association for Computational Linguistics, 2012: 1201-1211. |
4 | ZENG D J, LIU K, LAI S W, et al. Relation classification via convolutional deep neural network[C]// Proceedings of the 25th International Conference on Computational Linguistics: Technical Papers. Stroudsburg, PA: Association for Computational Linguistics, 2014: 2335-2344. |
5 | SANTOS C N DOS, XIANG B, ZHOU B W. Classifying relations by ranking with convolutional neural networks[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics/ the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2015: 626-634. 10.3115/v1/p15-1061 |
6 | XU Y, MOU L L, LI G, et al. Classifying relations via long short term memory networks along shortest dependency paths[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2015: 1785-1794. 10.18653/v1/d15-1206 |
7 | LEE J, SEO S, CHOI Y S. Semantic relation classification via bidirectional LSTM networks with entity-aware attention using latent entity typing[J]. Symmetry, 2019, 11(6): No.785. 10.3390/sym11060785 |
8 | MINTZ M, BILLS S, SNOW R, et al. Distant supervision for relation extraction without labeled data[C]// Proceedings of the Joint Conference of the 47th Annual Meeting of the Association for Computational Linguistics and the 4th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2009: 1003-1011. 10.3115/1690219.1690287 |
9 | LIN Y K, SHEN S Q, LIU Z Y, et al. Neural relation extraction with selective attention over instances[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2016: 2124-2133. 10.18653/v1/p16-1200 |
10 | PENG N Y, POON H, QUIRK C, et al. Cross-sentence n-ary relation extraction with graph LSTMs[J]. Transactions of the Association for Computational Linguistics, 2017, 5: 101-115. 10.1162/tacl_a_00049 |
11 | JI G L, LIU K, HE S Z, et al. Distant supervision for relation extraction with sentence-level attention and entity descriptions[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2017: 3060-3066. |
12 | LI Y, LONG G D, SHEN T, et al. Self-attention enhanced selective gate with entity-aware embedding for distantly supervised relation extraction[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 8269-8276. 10.1609/aaai.v34i05.6342 |
13 | BANKO M, CAFARELLA M J, SODERLAND S, et al. Open information extraction from the Web[C]// Proceedings of the 20th International Joint Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 2007: 2670-2676. 10.3115/1614164.1614177 |
14 | AKBIK A, LÖSER A. KrakeN: N-ary facts in open information extraction[C]// Proceedings of the 2012 Joint Workshop on Automatic Knowledge Base Construction and Web-scale Knowledge Extraction. Stroudsburg, PA: Association for Computational Linguistics, 2012: 52-56. |
15 | 王明波,王峥,邱秀连. 基于双向GRU和PCNN的人物关系抽取[J]. 电子设计工程, 2020, 28(10):160-165. 10.1109/access.2021.3078114 |
WANG M B, WANG Z, QIU X L. Character relationship extraction based on bidirectional GRU and PCNN[J]. Electronic Design Engineering, 2020, 28(10): 160-165. 10.1109/access.2021.3078114 | |
16 | 刘鉴,张怡,张勇. 基于双向LSTM和自注意力机制的中文关系抽取研究[J]. 山西大学学报(自然科学版), 2020, 43(1):8-13. |
LIU J, ZHANG Y, ZHANG Y. Chinese relationship extraction based on bidirectional LSTM and self-attention mechanism[J]. Journal of Shanxi University (Natural Science Edition), 2020, 43(1): 8-13 | |
17 | CUI Y M, CHE W X, LIU T, et al. Pre-training with whole word masking for Chinese BERT[EB/OL]. (2019-10-29) [2020-10-09]. . 10.1109/taslp.2021.3124365 |
18 | SUN Y, WANG S H, LI Y K, et al. ERNIE: enhanced representation through knowledge integration[EB/OL]. (2019-04-19) [2020-09-11].. |
19 | ZHOU P, SHI W, TIAN J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsburg, PA: Association for Computational Linguistics, 2016: 207-212. 10.18653/v1/p16-2034 |
20 | SHI P, LIN J. Simple BERT models for relation extraction and semantic role labeling[EB/OL]. (2019-04-10) [2020-09-21].. |
21 | WU S C, HE Y F. Enriching pre-trained language model with entity information for relation classification[C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 2361-2364. 10.1145/3357384.3358119 |
[1] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[2] | Qi SHUAI, Hairui WANG, Guifu ZHU. Chinese story ending generation model based on bidirectional contrastive training [J]. Journal of Computer Applications, 2024, 44(9): 2683-2688. |
[3] | Yubo ZHAO, Liping ZHANG, Sheng YAN, Min HOU, Mao GAO. Relation extraction between discipline knowledge entities based on improved piecewise convolutional neural network and knowledge distillation [J]. Journal of Computer Applications, 2024, 44(8): 2421-2429. |
[4] | Quanmei ZHANG, Runping HUANG, Fei TENG, Haibo ZHANG, Nan ZHOU. Automatic international classification of disease coding method incorporating heterogeneous information [J]. Journal of Computer Applications, 2024, 44(8): 2476-2482. |
[5] | Yuan TANG, Yanping CHEN, Ying HU, Ruizhang HUANG, Yongbin QIN. Relation extraction model based on multi-scale hybrid attention convolutional neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2011-2017. |
[6] | Ruihua LIU, Zihe HAO, Yangyang ZOU. Gait recognition algorithm based on multi-layer refined feature fusion [J]. Journal of Computer Applications, 2024, 44(7): 2250-2257. |
[7] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. |
[8] | Youren YU, Yangsen ZHANG, Yuru JIANG, Gaijuan HUANG. Chinese named entity recognition model incorporating multi-granularity linguistic knowledge and hierarchical information [J]. Journal of Computer Applications, 2024, 44(6): 1706-1712. |
[9] | Yue LIU, Fang LIU, Aoyun WU, Qiuyue CHAI, Tianxiao WANG. 3D object detection network based on self-attention mechanism and graph convolution [J]. Journal of Computer Applications, 2024, 44(6): 1972-1977. |
[10] | Chao WEI, Yanping CHEN, Kai WANG, Yongbin QIN, Ruizhang HUANG. Relation extraction method based on mask prompt and gated memory network calibration [J]. Journal of Computer Applications, 2024, 44(6): 1713-1719. |
[11] | Mengyuan HUANG, Kan CHANG, Mingyang LING, Xinjie WEI, Tuanfa QIN. Progressive enhancement algorithm for low-light images based on layer guidance [J]. Journal of Computer Applications, 2024, 44(6): 1911-1919. |
[12] | Guijin HAN, Xinyuan ZHANG, Wentao ZHANG, Ya HUANG. Self-supervised image registration algorithm based on multi-feature fusion [J]. Journal of Computer Applications, 2024, 44(5): 1597-1604. |
[13] | Xin LI, Qiao MENG, Junyi HUANGFU, Lingchen MENG. YOLOv5 multi-attribute classification based on separable label collaborative learning [J]. Journal of Computer Applications, 2024, 44(5): 1619-1628. |
[14] | Hongtian LI, Xinhao SHI, Weiguo PAN, Cheng XU, Bingxin XU, Jiazheng YUAN. Few-shot object detection via fusing multi-scale and attention mechanism [J]. Journal of Computer Applications, 2024, 44(5): 1437-1444. |
[15] | Longtao GAO, Nana LI. Aspect sentiment triplet extraction based on aspect-aware attention enhancement [J]. Journal of Computer Applications, 2024, 44(4): 1049-1057. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||