[1] 何佳, 何基报, 王霞, 等. 机构投资者一定能够稳定股市吗?——来自中国的经验证据[J]. 管理世界,2007(8):35-42.(HE J,HE J B,WANG X,et al. Can institutional investors be able to stabilize the stock market?-evidence from China[J]. Management World,2007(8):35-42.) [2] 王咏梅, 王亚平. 机构投资者如何影响市场的信息效率——来自中国的经验证据[J]. 金融研究,2011(10):112-126.(WANG Y M,WANG Y P. How institutional investors affect the information efficiency of markets-evidence from china[J]. Journal of Financial Research,2011(10):112-126.) [3] 刘京军, 徐浩萍. 机构投资者:长期投资者还是短期机会主义者?[J]. 金融研究,2012(9):141-154.(LIU J J,XU H P. Institutional investors:long-term investors or short-term opportunists?[J]. Journal of Financial Research, 2012(9):141-154.) [4] 史永东, 王谨乐. 中国机构投资者真的稳定市场了吗?[J]. 经济研究,2014(12):100-112.(SHI Y D,WANG J L. Do Chinese institutional investors really stabilize the market?[J]. Economic Research Journal,2014(12):100-112.) [5] 王强, 吕政, 王霖青, 等. 基于深度去噪核映射的长期预测模型[J]. 控制与决策,2019,34(5):989-996.(WANG Q,LYU Z, WANG L Q,et al. Deep denoising kernel mapping-based long-term prediction model[J]. Control and Decision, 2019, 34(5):989-996.) [6] 张贵生, 张信东. 基于微分信息的ARMAD-GARCH股价预测模型[J]. 系统工程理论与实践,2016,36(5):1136-1145. (ZHANG G S,ZHANG X D. A differential-information based ARMAD-GARCH stock price forecasting model[J]. Systems Engineering-Theory and Practice,2016,36(5):1136-1145.) [7] 吴少聪. 基于混合模型的股票趋势预测方法研究[D]. 哈尔滨:哈尔滨工业大学,2017:61.(WU S C. Research on methods of stock trends prediction based on hybrid model[D]. Harbin:Harbin Institute of Technology,2017:61.) [8] 宋刚, 张云峰, 包芳勋, 等. 基于粒子群优化LSTM的股票预测模型[J]. 北京航空航天大学学报,2019,45(12):2533-2542. (SONG G,ZHANG Y F,BAO F X,et al. Stock prediction model based on particle swarm optimization LSTM[J]. Journal of Beijing University of Aeronautics and Astronautics,2019,45(12):2533-2542.) [9] 石浩. 基于递归神经网络的股票趋势预测研究[D]. 北京:北京邮电大学,2018:45.(SHI H. Research on stock trend forecasting based on recurrent neural network[D]. Beijing:Beijing University of Posts and Telecommunications,2018:45.) [10] 谢琪, 程耕国, 徐旭. 基于神经网络集成学习股票预测模型的研究[J]. 计算机工程与应用,2019,55(8):238-243.(XIE Q, CHENG G G,XU X. Research based on stock predicting model of neural networks ensemble learning[J]. Computer Engineering and Applications,2019,55(8):238-243.) [11] NAKAGAWA K, IMAMURA M, YOSHIDA K. Stock price prediction using k-medoids clustering with indexing dynamic time warping[J]. Electronics and Communications in Japan,2019,102(2):3-8. [12] 李海林, 梁叶, 王少春. 时间序列数据挖掘中的动态时间弯曲研究综述[J]. 控制与决策,2018,33(8):1345-1353.(LI H L, LIANG Y,WANG S C. Review on dynamic time warping in time series data mining[J]. Control and Decision,2018,33(8):1345-1353.) [13] CHEN Y,KEOGH E,HU B,et al. UCR time series classification archive[EB/OL].[2019-09-01]. https://www.cs.ucr.edu/~eamonn/time_series_data/. [14] YEH C C M,ZHU Y,ULANOVA L,et al. Matrix profile Ⅰ:all pairs similarity joins for time series:a unifying view that includes motifs,discords and shapelets[C]//Proceedings of the IEEE 16th International Conference on Data Mining. Piscataway:IEEE, 2016:1317-1322. [15] ZHU Y,ZIMMERMAN Z,SENOBARI N S,et al. Matrix profile Ⅱ:Exploiting a novel algorithm and GPUs to break the one hundred million barrier for time series motifs and joins[C]//Proceedings of the IEEE 16th International Conference on Data Mining. Piscataway:IEEE,2016:739-748. [16] YEH C C M,KAVANTZAS N,KEOGH E. Matrix profile Ⅳ:using weakly labeled time series to predict outcomes[J]. Proceedings of the VLDB Endowment,2017,10(12):1802-1812. [17] DAU H A,KEOGH E. Matrix profile Ⅴ:a generic technique to incorporate domain knowledge into motif discovery[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2017:125-134. [18] YEH C C M,KAVANTZAS N,KEOGH E. Matrix profile Ⅵ:Meaningful multidimensional motif discovery[C]//Proceedings of the 2017 IEEE International Conference on Data Mining. Piscataway:IEEE,2017:565-574. [19] ZHU Y,IMAMURA M,NIKOVSKI D,et al. Matrix profile Ⅶ:time series chains:a new primitive for time series data mining[C]//Proceedings of the 2017 IEEE International Conference on Data Mining. Piscataway:IEEE,2017:695-704. [20] ZHU Y,MUEEN A,KEOGH E. Matrix profile Ⅸ:admissible time series motif discovery with missing data[J]. IEEE Transactions on Knowledge and Data Engineering,2019(Early Access):1-1. [21] ZHU Y,YEH C C M,ZIMMERMAN Z,et al. Matrix profile Ⅺ:SCRIMP++:time series motif discovery at interactive speeds[C]//Proceedings of the 2018 IEEE International Conference on Data Mining. Piscataway:IEEE,2018:837-846. [22] GHARGHABI S,IMANI S,BAGNALL A,et al. Matrix profile Ⅻ:MPdist:a novel time series distance measure to allow data mining in more challenging scenarios[C]//Proceedings of the 2018 IEEE International Conference on Data Mining. Piscataway:IEEE,2018:965-970. [23] IMANI S,MADRID F,DING W,et al. Matrix profile XIII:time series snippets:a new primitive for time series data mining[C]//Proceedings of the 2018 IEEE International Conference on Big Knowledge. Piscataway:IEEE,2018:382-389. [24] YEH C C M,ZHU Y,ULANOVA L,et al. Time series joins, motifs,discords and shapelets:a unifying view that exploits the matrix profile[J]. Data Mining and Knowledge Discovery,2018, 32(1):83-123.series data mining[J]. Control and Decision,2018,33(8):1345-1353.) [13] CHEN Y,KEOGH E,HU B,et al. UCR time series classification archive[EB/OL].[2019-09-01]. https://www.cs.ucr.edu/~eamonn/time_series_data/. [14] YEH C C M,ZHU Y,ULANOVA L,et al. Matrix profile Ⅰ:all pairs similarity joins for time series:a unifying view that includes motifs,discords and shapelets[C]//Proceedings of the IEEE 16th International Conference on Data Mining. Piscataway:IEEE, 2016:1317-1322. [15] ZHU Y,ZIMMERMAN Z,SENOBARI N S,et al. Matrix profile Ⅱ:Exploiting a novel algorithm and GPUs to break the one hundred million barrier for time series motifs and joins[C]//Proceedings of the IEEE 16th International Conference on Data Mining. Piscataway:IEEE,2016:739-748. [16] YEH C C M,KAVANTZAS N,KEOGH E. Matrix profile Ⅳ:using weakly labeled time series to predict outcomes[J]. Proceedings of the VLDB Endowment,2017,10(12):1802-1812. [17] DAU H A,KEOGH E. Matrix profile Ⅴ:a generic technique to incorporate domain knowledge into motif discovery[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2017:125-134. [18] YEH C C M,KAVANTZAS N,KEOGH E. Matrix profile Ⅵ:Meaningful multidimensional motif discovery[C]//Proceedings of the 2017 IEEE International Conference on Data Mining. Piscataway:IEEE,2017:565-574. [19] ZHU Y,IMAMURA M,NIKOVSKI D,et al. Matrix profile Ⅶ:time series chains:a new primitive for time series data mining[C]//Proceedings of the 2017 IEEE International Conference on Data Mining. Piscataway:IEEE,2017:695-704. [20] ZHU Y,MUEEN A,KEOGH E. Matrix profile Ⅸ:admissible time series motif discovery with missing data[J]. IEEE Transactions on Knowledge and Data Engineering,2019(Early Access):1-1. [21] ZHU Y,YEH C C M,ZIMMERMAN Z,et al. Matrix profile Ⅺ:SCRIMP++:time series motif discovery at interactive speeds[C]//Proceedings of the 2018 IEEE International Conference on Data Mining. Piscataway:IEEE,2018:837-846. [22] GHARGHABI S,IMANI S,BAGNALL A,et al. Matrix profile Ⅻ:MPdist:a novel time series distance measure to allow data mining in more challenging scenarios[C]//Proceedings of the 2018 IEEE International Conference on Data Mining. Piscataway:IEEE,2018:965-970. [23] IMANI S,MADRID F,DING W,et al. Matrix profile XIII:time series snippets:a new primitive for time series data mining[C]//Proceedings of the 2018 IEEE International Conference on Big Knowledge. Piscataway:IEEE,2018:382-389. [24] YEH C C M,ZHU Y,ULANOVA L,et al. Time series joins, motifs,discords and shapelets:a unifying view that exploits the matrix profile[J]. Data Mining and Knowledge Discovery,2018, 32(1):83-123. |