Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (5): 1440-1446.DOI: 10.11772/j.issn.1001-9081.2021050834
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Yongshuai LU, Yingjie TANG(), Xinran MA
Received:
2021-05-18
Revised:
2021-09-09
Accepted:
2021-09-16
Online:
2021-09-09
Published:
2022-05-10
Contact:
Yingjie TANG
About author:
LU Yongshuai, born in 1996,M. S. candidate. His researchinterests include deep learning,image processing.Supported by:
通讯作者:
唐英杰
作者简介:
鲁永帅(1996—),男,河南项城人,硕士研究生,主要研究方向:深度学习、图像处理基金资助:
CLC Number:
Yongshuai LU, Yingjie TANG, Xinran MA. Low contrast filament sizing defect detection method of non-woven fabric based on deep feature fusion[J]. Journal of Computer Applications, 2022, 42(5): 1440-1446.
鲁永帅, 唐英杰, 马鑫然. 基于深度特征融合的无纺布低对比度浆丝缺陷检测方法[J]. 《计算机应用》唯一官方网站, 2022, 42(5): 1440-1446.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021050834
层数 | 每层类型 | 卷积核大小 | 数量 | 步长 |
---|---|---|---|---|
1 | 卷积层1 | 64 | 1 | |
2 | 卷积层2 | 64 | 1 | |
3 | 池化层2 | 64 | 2 | |
4 | 卷积层3 | 128 | 1 | |
5 | 卷积层4 | 128 | 1 | |
6 | 池化层4 | 128 | 2 | |
7 | 卷积层5 | 256 | 1 | |
8 | 卷积层6 | 256 | 1 | |
9 | 池化层6 | 256 | 2 | |
10 | 卷积层7 | 512 | 1 | |
11 | 卷积层8 | 512 | 1 | |
12 | 池化层8 | 512 | 2 | |
13 | 空洞卷积层9( 空洞卷积层9( | 512 | 1 | |
14 | 池化层9 | 512 | 2 | |
15 | 卷积层10 | 512 | 1 |
Tab. 1 Structural parameters of convolutional neural network
层数 | 每层类型 | 卷积核大小 | 数量 | 步长 |
---|---|---|---|---|
1 | 卷积层1 | 64 | 1 | |
2 | 卷积层2 | 64 | 1 | |
3 | 池化层2 | 64 | 2 | |
4 | 卷积层3 | 128 | 1 | |
5 | 卷积层4 | 128 | 1 | |
6 | 池化层4 | 128 | 2 | |
7 | 卷积层5 | 256 | 1 | |
8 | 卷积层6 | 256 | 1 | |
9 | 池化层6 | 256 | 2 | |
10 | 卷积层7 | 512 | 1 | |
11 | 卷积层8 | 512 | 1 | |
12 | 池化层8 | 512 | 2 | |
13 | 空洞卷积层9( 空洞卷积层9( | 512 | 1 | |
14 | 池化层9 | 512 | 2 | |
15 | 卷积层10 | 512 | 1 |
层数 | 每层类型 | 卷积核大小 | 数量 | 步长 | 特征大小 |
---|---|---|---|---|---|
1 | 卷积层1 | 512 | 1 | H/32,W/32 | |
2 | 上采样1 | — | — | — | H/16,W/16 |
3 | 特征融合1 | — | — | — | H/16,W/16 |
4 | 卷积层2 | 256 | 1 | H/16,W/16 | |
5 | 上采样2 | — | — | — | H/8,W/8 |
6 | 特征融合2 | — | — | — | H/8,W/8 |
7 | 卷积层3 | 128 | 1 | H/8,W/8 | |
8 | 上采样3 | — | — | — | H/4,W/4 |
9 | 特征融合3 | — | — | — | H/4,W/4 |
10 | 卷积层4 | 64 | 1 | H/4,W/4 | |
11 | 上采样4 | — | — | — | H/4,W/4 |
12 | 特征融合4 | — | — | — | H/2,W/2 |
14 | 卷积层5 | 32 | 1 | H/2,W/2 | |
15 | 上采样5 | — | — | — | H,W |
16 | 卷积层6 | 2 | 1 | H,W |
Tab. 2 Detail parameters of decoder
层数 | 每层类型 | 卷积核大小 | 数量 | 步长 | 特征大小 |
---|---|---|---|---|---|
1 | 卷积层1 | 512 | 1 | H/32,W/32 | |
2 | 上采样1 | — | — | — | H/16,W/16 |
3 | 特征融合1 | — | — | — | H/16,W/16 |
4 | 卷积层2 | 256 | 1 | H/16,W/16 | |
5 | 上采样2 | — | — | — | H/8,W/8 |
6 | 特征融合2 | — | — | — | H/8,W/8 |
7 | 卷积层3 | 128 | 1 | H/8,W/8 | |
8 | 上采样3 | — | — | — | H/4,W/4 |
9 | 特征融合3 | — | — | — | H/4,W/4 |
10 | 卷积层4 | 64 | 1 | H/4,W/4 | |
11 | 上采样4 | — | — | — | H/4,W/4 |
12 | 特征融合4 | — | — | — | H/2,W/2 |
14 | 卷积层5 | 32 | 1 | H/2,W/2 | |
15 | 上采样5 | — | — | — | H,W |
16 | 卷积层6 | 2 | 1 | H,W |
网络 | MIoU/% | MPA/% | 训练时间(每轮)/min | 检测时间/ms |
---|---|---|---|---|
Deeplabv3+ | 63.28 | 64.05 | 17 | 90 |
Xception | 71.72 | 74.15 | 26 | 117 |
Pspnet | 53.60 | 54.24 | 8 | 40 |
Unet | 74.64 | 78.60 | 9 | 42 |
原Segnet | 65.57 | 66.77 | 13 | 90 |
文献[ | 76.14 | 80.10 | 15 | 117 |
改进网络 | 77.32 | 86.17 | 7 | 50 |
Tab. 3 Performance comparison of different networks
网络 | MIoU/% | MPA/% | 训练时间(每轮)/min | 检测时间/ms |
---|---|---|---|---|
Deeplabv3+ | 63.28 | 64.05 | 17 | 90 |
Xception | 71.72 | 74.15 | 26 | 117 |
Pspnet | 53.60 | 54.24 | 8 | 40 |
Unet | 74.64 | 78.60 | 9 | 42 |
原Segnet | 65.57 | 66.77 | 13 | 90 |
文献[ | 76.14 | 80.10 | 15 | 117 |
改进网络 | 77.32 | 86.17 | 7 | 50 |
网络 | 改进卷积层 | 多尺度采样融合 | 跳跃连接 | MIoU/% | MPA/% |
---|---|---|---|---|---|
原Segnet | × | × | × | 65.57 | 66.77 |
改进1 | √ | × | × | 75.84 | 82.01 |
改进2 | √ | √ | × | 77.05 | 83.76 |
改进3 | √ | √ | √ | 77.32 | 86.17 |
Tab. 4 Comparison of performance results at various stages ofimproved networks
网络 | 改进卷积层 | 多尺度采样融合 | 跳跃连接 | MIoU/% | MPA/% |
---|---|---|---|---|---|
原Segnet | × | × | × | 65.57 | 66.77 |
改进1 | √ | × | × | 75.84 | 82.01 |
改进2 | √ | √ | × | 77.05 | 83.76 |
改进3 | √ | √ | √ | 77.32 | 86.17 |
1 | 张静.浅谈现阶段我国无纺布生产的现状与发展[J].科技创新导报,2011(31):72. 10.3969/j.issn.1674-098X.2011.31.050 |
ZHANG J. On the present situation and development of nonwoven fabric production in China [J]. Science and Technology Innovation Herald, 2011(31): 72. 10.3969/j.issn.1674-098X.2011.31.050 | |
2 | 许祖鑫.基于Gabor滤波器的无纺布疵点检测系统研究[D].武汉:华中科技大学,2013:16-26. |
XU Z X. Research on nonwoven fabric defect detection system using Gabor filter [D]. Wuhan: Huazhong University of Science and Technology, 2013: 16-26. | |
3 | 张渤,张代林,陈幼平.用于无纺布缺陷检测的Gabor滤波器参数研究[J].武汉理工大学学报,2012,34(7):129-133. 10.3963/j.issn.1671-4431.2012.07.027 |
ZHANG B, ZHANG D L, CHEN Y P. Research on Gabor filter parameters used for non-woven fabric defects detection [J]. Journal of Wuhan University of Technology, 2012, 34(7): 129-133. 10.3963/j.issn.1671-4431.2012.07.027 | |
4 | 邵鑫玉,华继钊.基于机器视觉的无纺布缺陷自动检测系统[J].计算机科学,2014,41(6A):487-489. |
SHAO X Y, HUA J Z. Automatic detection system of fabric defects based on machine vision [J]. Computer Science, 2014, 41(6A): 487-489. | |
5 | 撒雨昕,蔡硕.基于最优Gabor滤波器的无纺布缺陷检测[J].信息通信,2018(10):18-20. 10.3969/j.issn.1673-1131.2018.10.008 |
SA Y X, CAI S. Non-woven fabric defect detection based on optimized Gabor filter [J]. Information and Communications, 2018(10): 18-20. 10.3969/j.issn.1673-1131.2018.10.008 | |
6 | 陈先,郭东妮,尹文芳.SVM在无纺布质量检测方面的应用[J].电子制作,2020(15):90-93,67. |
CHEN X, GUO D N, YI W F. Application of SVM in quality inspection of nonwoven fabrics [J]. Practical Electronics, 2020(15): 90-93, 67. | |
7 | 王文远,金晅宏,韩悦.改进二叉树SVM模型在无纺布缺陷检测中的应用[J].电子测量技术,2020,43(20):98-103. 10.19651/j.cnki.emt.2004813 |
WANG W Y, JIN X H, HAN Y. Application of the improved binary tree SVM model in non-woven fabric defect detection [J]. Electronic Measurement Technology, 2020, 43(20): 98-103. 10.19651/j.cnki.emt.2004813 | |
8 | 赵鹏,唐英杰,杨牧,等.卷积神经网络在无纺布缺陷分类检测中的应用[J].包装工程,2020,41(5):192-196. |
ZHAO P, TANG Y J, YANG M, et al. Application of convolutional neural network in classification and detection of non-woven fabric defects [J]. Packaging Engineering, 2020, 41(5): 192-196. | |
9 | 邓泽林,刘行,董云龙,等.无纺布疵点实时检测技术与系统设计[J].自动化学报,2021,47(3):583-593. |
DENG Z L, LIU X, DONG Y L, et al. Non-woven fabric real-time defects detection method and framework design [J]. Acta Automatica Sinica, 2021, 47(3): 583-593. | |
10 | 汪坤,史伟民,李建强,等.基于深度学习的织物印花分割算法研究[J].现代纺织技术,2021,29(3):45-50. 10.1109/itoec53115.2022.9734539 |
WANG K, SHI W M, LI J Q, et al. Research on fabric printing segmentation algorithm based on deep learning [J]. Advanced Textile Technology, 2021, 29(3): 45-50. 10.1109/itoec53115.2022.9734539 | |
11 | ALQAZZAZ S, SUN X F, YANG X, et al. Automated brain tumor segmentation on multi-modal MR image using SegNet [J]. Computational Visual Media, 2019, 5(2): 209-219. 10.1007/s41095-019-0139-y |
12 | ZHAO B D, LU H Z, CHEN S F, et al. Convolutional neural networks for time series classification [J]. Journal of Systems Engineering and Electronics, 2017, 28(1): 162-169. 10.21629/jsee.2017.01.18 |
13 | 余珮嘉,张靖,谢晓尧.基于自适应池化的行人检测方法[J].河北科技大学学报,2019,40(6):533-539. 10.7535/hbkd.2019yx06011 |
YU P J, ZHANG J, XIE X Y. Pedestrian detection based on adaptive pooling method [J]. Journal of Hebei University of Science and Technology, 2019, 40(6): 533-539. 10.7535/hbkd.2019yx06011 | |
14 | LIU B. Understanding the loss landscape of one-hidden-layer ReLU networks [J]. Knowledge-Based Systems, 2021, 220: No.106923. 10.1016/j.knosys.2021.106923 |
15 | SONG W D, JIA G H, ZHU H, et al. Automated pavement crack damage detection using deep multiscale convolutional features [J]. Journal of Advanced Transportation, 2020, 2020: Article No.6412562. 10.1155/2020/6412562 |
16 | SUN X F, LI J M, MA J L, et al. Segmentation of overlapping chromosome images using U-Net with improved dilated convolutions [J]. Journal of Intelligent and Fuzzy Systems, 2021, 40(3): 5653-5668. 10.3233/jifs-201466 |
17 | 徐龙飞,郁进明.不同优化器在高斯噪声下对LR性能影响的研究[J].计算机技术与发展,2020,30(3):7-12. 10.3969/j.issn.1673-629X.2020.03.002 |
XU L F, YU J M. Study on influence of different optimizers on performance of LR under Gaussian noise [J]. Computer Technology and Development, 2020, 30(3): 7-12. 10.3969/j.issn.1673-629X.2020.03.002 |
[1] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[2] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[3] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[4] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[5] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[6] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[7] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[8] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[9] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
[10] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[11] | Zhi ZHANG, Xin LI, Naifu YE, Kaixi HU. DKP: defending against model stealing attacks based on dark knowledge protection [J]. Journal of Computer Applications, 2024, 44(7): 2080-2086. |
[12] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. |
[13] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[14] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. |
[15] | Yuanjiong LIU, Maozheng HE, Yibin HUANG, Cheng QIAN. Ship identification model based on ResNet50 and improved attention mechanism [J]. Journal of Computer Applications, 2024, 44(6): 1935-1941. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||