Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (8): 2353-2360.DOI: 10.11772/j.issn.1001-9081.2021061037
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
					
						                                                                                                                                                                                                                    Zhenhu LYU1, Xinzheng XU1,2( ), Fangyan ZHANG3
), Fangyan ZHANG3
												  
						
						
						
					
				
Received:2021-06-21
															
							
																	Revised:2021-09-04
															
							
																	Accepted:2021-09-14
															
							
							
																	Online:2021-10-18
															
							
																	Published:2022-08-10
															
							
						Contact:
								Xinzheng XU   
													About author:LYU Zhenhu, born in 1995, M. S. candidate. His research interests include machine learning, computer vision.Supported by:通讯作者:
					许新征
							作者简介:吕振虎(1995—),男,山东枣庄人,硕士研究生,主要研究方向:机器学习、计算机视觉;基金资助:CLC Number:
Zhenhu LYU, Xinzheng XU, Fangyan ZHANG. Lightweight attention mechanism module based on squeeze and excitation[J]. Journal of Computer Applications, 2022, 42(8): 2353-2360.
吕振虎, 许新征, 张芳艳. 基于挤压激励的轻量化注意力机制模块[J]. 《计算机应用》唯一官方网站, 2022, 42(8): 2353-2360.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021061037
| 模型 | 测试精度/% | 参数量/106 | 计算量/106 | |||
|---|---|---|---|---|---|---|
| CIFAR10 | CIFAR100 | CIFAR10 | CIFAR100 | CIFAR10 | CIFAR100 | |
| VGG16 | 93.25 | 72.57 | 14.73 | 14.77 | 313.33 | 313.33 | 
| VGG16+SE | 93.80 | 73.37 | 15.63 | 15.68 | 314.24 | 314.24 | 
| VGG16+CA | 93.86 | 73.51 | 14.91 | 14.96 | 314.41 | 314.41 | 
| VGG16+CBAM | 93.71 | 72.61 | 14.96 | 15.01 | 313.61 | 313.61 | 
| VGG16+ECA | 93.65 | 71.51 | 14.73 | 14.77 | 313.33 | 313.33 | 
| VGG16+HD-SE | 93.97 | 73.83 | 14.73 | 14.78 | 313.34 | 313.34 | 
| VGG16+WD-SE | 93.98 | 74.14 | 14.73 | 14.78 | 313.34 | 313.34 | 
Tab. 1 Results of VGG16 on CIFAR10/100 datasets
| 模型 | 测试精度/% | 参数量/106 | 计算量/106 | |||
|---|---|---|---|---|---|---|
| CIFAR10 | CIFAR100 | CIFAR10 | CIFAR100 | CIFAR10 | CIFAR100 | |
| VGG16 | 93.25 | 72.57 | 14.73 | 14.77 | 313.33 | 313.33 | 
| VGG16+SE | 93.80 | 73.37 | 15.63 | 15.68 | 314.24 | 314.24 | 
| VGG16+CA | 93.86 | 73.51 | 14.91 | 14.96 | 314.41 | 314.41 | 
| VGG16+CBAM | 93.71 | 72.61 | 14.96 | 15.01 | 313.61 | 313.61 | 
| VGG16+ECA | 93.65 | 71.51 | 14.73 | 14.77 | 313.33 | 313.33 | 
| VGG16+HD-SE | 93.97 | 73.83 | 14.73 | 14.78 | 313.34 | 313.34 | 
| VGG16+WD-SE | 93.98 | 74.14 | 14.73 | 14.78 | 313.34 | 313.34 | 
| 模型 | 测试精度/% | 参数量/106 | 计算量/106 | |||
|---|---|---|---|---|---|---|
| CIFAR10 | CIFAR100 | CIFAR10 | CIFAR100 | CIFAR10 | CIFAR100 | |
| ResNet56 | 93.10 | 71.43 | 0.85 | 0.86 | 125.49 | 125.49 | 
| ResNet56+SE | 93.67 | 72.26 | 0.88 | 0.89 | 125.50 | 125.50 | 
| ResNet56+CA | 94.06 | 72.22 | 0.88 | 0.89 | 125.95 | 125.95 | 
| ResNet56+CBAM | 93.90 | 72.25 | 0.86 | 0.87 | 126.67 | 126.67 | 
| ResNet56+ECA | 93.84 | 72.21 | 0.85 | 0.86 | 125.49 | 125.49 | 
| ResNet56+HD-SE | 93.76 | 72.39 | 0.86 | 0.86 | 125.49 | 125.49 | 
| ResNet56+WD-SE | 93.84 | 72.53 | 0.86 | 0.86 | 125.49 | 125.49 | 
Tab. 2 Results of ResNet56 on CIFAR10/100 datasets
| 模型 | 测试精度/% | 参数量/106 | 计算量/106 | |||
|---|---|---|---|---|---|---|
| CIFAR10 | CIFAR100 | CIFAR10 | CIFAR100 | CIFAR10 | CIFAR100 | |
| ResNet56 | 93.10 | 71.43 | 0.85 | 0.86 | 125.49 | 125.49 | 
| ResNet56+SE | 93.67 | 72.26 | 0.88 | 0.89 | 125.50 | 125.50 | 
| ResNet56+CA | 94.06 | 72.22 | 0.88 | 0.89 | 125.95 | 125.95 | 
| ResNet56+CBAM | 93.90 | 72.25 | 0.86 | 0.87 | 126.67 | 126.67 | 
| ResNet56+ECA | 93.84 | 72.21 | 0.85 | 0.86 | 125.49 | 125.49 | 
| ResNet56+HD-SE | 93.76 | 72.39 | 0.86 | 0.86 | 125.49 | 125.49 | 
| ResNet56+WD-SE | 93.84 | 72.53 | 0.86 | 0.86 | 125.49 | 125.49 | 
| 模型 | 测试精度/% | 参数量/106 | 计算量/106 | |||
|---|---|---|---|---|---|---|
| CIFAR10 | CIFAR100 | CIFAR10 | CIFAR100 | CIFAR10 | CIFAR100 | |
| MobileNetV1 | 91.24 | 67.89 | 3.22 | 3.31 | 46.34 | 46.34 | 
| MobileNetV1+SE | 91.88 | 69.16 | 5.14 | 5.23 | 48.26 | 48.26 | 
| MobileNetV1+CA | 91.92 | 69.52 | 3.59 | 3.69 | 48.01 | 48.01 | 
| MobileNetV1+CBAM | 91.73 | 68.55 | 3.70 | 3.80 | 46.52 | 46.52 | 
| MobileNetV1+ECA | 91.54 | 68.03 | 3.22 | 3.31 | 46.34 | 46.34 | 
| MobileNetV1+HD-SE | 92.19 | 69.99 | 3.22 | 3.31 | 46.35 | 46.35 | 
| MobileNetV1+WD-SE | 91.92 | 69.84 | 3.22 | 3.31 | 46.35 | 46.35 | 
Tab. 3 Results of MobileNetV1 on CIFAR10/100 datasets
| 模型 | 测试精度/% | 参数量/106 | 计算量/106 | |||
|---|---|---|---|---|---|---|
| CIFAR10 | CIFAR100 | CIFAR10 | CIFAR100 | CIFAR10 | CIFAR100 | |
| MobileNetV1 | 91.24 | 67.89 | 3.22 | 3.31 | 46.34 | 46.34 | 
| MobileNetV1+SE | 91.88 | 69.16 | 5.14 | 5.23 | 48.26 | 48.26 | 
| MobileNetV1+CA | 91.92 | 69.52 | 3.59 | 3.69 | 48.01 | 48.01 | 
| MobileNetV1+CBAM | 91.73 | 68.55 | 3.70 | 3.80 | 46.52 | 46.52 | 
| MobileNetV1+ECA | 91.54 | 68.03 | 3.22 | 3.31 | 46.34 | 46.34 | 
| MobileNetV1+HD-SE | 92.19 | 69.99 | 3.22 | 3.31 | 46.35 | 46.35 | 
| MobileNetV1+WD-SE | 91.92 | 69.84 | 3.22 | 3.31 | 46.35 | 46.35 | 
| 模型 | 测试精度/% | 参数量/106 | 计算量/106 | |||
|---|---|---|---|---|---|---|
| CIFAR10 | CIFAR100 | CIFAR10 | CIFAR100 | CIFAR10 | CIFAR100 | |
| MobileNetV2 | 93.33 | 74.83 | 2.30 | 2.41 | 91.14 | 91.14 | 
| MobileNetV2+SE | 93.41 | 75.65 | 4.55 | 4.67 | 93.40 | 93.40 | 
| MobileNetV2+CA | 93.61 | 75.05 | 2.74 | 2.86 | 94.60 | 94.60 | 
| MobileNetV2+CBAM | 93.52 | 75.34 | 2.87 | 2.99 | 91.57 | 91.57 | 
| MobileNetV2+ECA | 93.72 | 75.20 | 2.30 | 2.41 | 91.14 | 91.14 | 
| MobileNetV2+HD-SE | 93.54 | 75.01 | 2.30 | 2.41 | 91.14 | 91.14 | 
| MobileNetV2+WD-SE | 93.43 | 75.15 | 2.30 | 2.41 | 91.14 | 91.14 | 
Tab. 4 Results of MobileNetV2 on CIFAR10/100 datasets
| 模型 | 测试精度/% | 参数量/106 | 计算量/106 | |||
|---|---|---|---|---|---|---|
| CIFAR10 | CIFAR100 | CIFAR10 | CIFAR100 | CIFAR10 | CIFAR100 | |
| MobileNetV2 | 93.33 | 74.83 | 2.30 | 2.41 | 91.14 | 91.14 | 
| MobileNetV2+SE | 93.41 | 75.65 | 4.55 | 4.67 | 93.40 | 93.40 | 
| MobileNetV2+CA | 93.61 | 75.05 | 2.74 | 2.86 | 94.60 | 94.60 | 
| MobileNetV2+CBAM | 93.52 | 75.34 | 2.87 | 2.99 | 91.57 | 91.57 | 
| MobileNetV2+ECA | 93.72 | 75.20 | 2.30 | 2.41 | 91.14 | 91.14 | 
| MobileNetV2+HD-SE | 93.54 | 75.01 | 2.30 | 2.41 | 91.14 | 91.14 | 
| MobileNetV2+WD-SE | 93.43 | 75.15 | 2.30 | 2.41 | 91.14 | 91.14 | 
| 1 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. 10.1145/3065386 | 
| 2 | HAN K, GUO J Y, ZHANG C, et al. Attribute-aware attention model for fine-grained representation learning [C]// Proceedings of the 26th ACM International Conference on Multimedia. New York: ACM, 2018: 2040-2048. 10.1145/3240508.3240550 | 
| 3 | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. 10.1109/tpami.2016.2577031 | 
| 4 | 张顺,龚怡宏,王进军.深度卷积神经网络的发展及其在计算机视觉领域的应用[J].计算机学报, 2019, 42(3): 453-482. 10.11897/SP.J.1016.2019.00453 | 
| ZHANG S, GONG Y H, WANG J J. The development of deep convolution neural networks and its applications on computer vision[J]. Chinese Journal of Computers, 2019, 42(3): 453-482. 10.11897/SP.J.1016.2019.00453 | |
| 5 | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. 10.1109/tpami.2017.2699184 | 
| 6 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. 10.1109/cvpr.2018.00745 | 
| 7 | PARK J, WOO S, LEE J Y, et al. BAM: bottleneck attention module [C]// Proceedings of the 2018 British Machine Vision Conference. Durham: BMVA Press, 2018: No.92. | 
| 8 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19. | 
| 9 | WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 13708-13717. 10.1109/cvpr42600.2020.01155 | 
| 10 | HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 11531-11539. 10.1109/cvpr46437.2021.01350 | 
| 11 | MEHTA S, HAJISHIRZI H, RASTEGARI M. DiCENet: dimension-wise convolutions for efficient networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(5): 2416-2425. | 
| 12 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10) [2021-04-19]. . | 
| 13 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 | 
| 14 | HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017-04-17) [2021-06-20]. . | 
| 15 | SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4510-4520. 10.1109/cvpr.2018.00474 | 
| 16 | PASZKE A, GROSS S, CHINTALA S, et al. Automatic differentiation in PyTorch[EB/OL]. [2021-06-28]. . | 
| 17 | KRIZHEVSKY A. Learning multiple layers of features from tiny images[R/OL]. (2009-04-08) [2021-02-19]. . | 
| 18 | MENG F X, CHENG H, LI K, et al. Pruning filter in filter[C/OL]// Proceedings of the 34th Conference on Neural Information Processing Systems. [2021-02-20]. . 10.1109/cvpr42600.2020.00663 | 
| 19 | KUANG L. PyTorch-CIFAR[CP/OL]. [2021-06-20]. . | 
| [1] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. | 
| [2] | Yanjun LI, Yaodong GE, Qi WANG, Weiguo ZHANG, Chen LIU. Improved KLEIN algorithm and its quantum analysis [J]. Journal of Computer Applications, 2024, 44(9): 2810-2817. | 
| [3] | Hong CHEN, Bing QI, Haibo JIN, Cong WU, Li’ang ZHANG. Class-imbalanced traffic abnormal detection based on 1D-CNN and BiGRU [J]. Journal of Computer Applications, 2024, 44(8): 2493-2499. | 
| [4] | Dongwei WANG, Baichen LIU, Zhi HAN, Yanmei WANG, Yandong TANG. Deep network compression method based on low-rank decomposition and vector quantization [J]. Journal of Computer Applications, 2024, 44(7): 1987-1994. | 
| [5] | Yangyi GAO, Tao LEI, Xiaogang DU, Suiyong LI, Yingbo WANG, Chongdan MIN. Crowd counting and locating method based on pixel distance map and four-dimensional dynamic convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2233-2242. | 
| [6] | Yongjin ZHANG, Jian XU, Mingxing ZHANG. Lightweight algorithm for impurity detection in raw cotton based on improved YOLOv7 [J]. Journal of Computer Applications, 2024, 44(7): 2271-2278. | 
| [7] | Xiaohui CHENG, Yuntian HUANG, Ruifang ZHANG. Lightweight infrared road scene detection model based on multiscale and weighted coordinate attention [J]. Journal of Computer Applications, 2024, 44(6): 1927-1934. | 
| [8] | Mengyuan HUANG, Kan CHANG, Mingyang LING, Xinjie WEI, Tuanfa QIN. Progressive enhancement algorithm for low-light images based on layer guidance [J]. Journal of Computer Applications, 2024, 44(6): 1911-1919. | 
| [9] | Jianjing LI, Guanfeng LI, Feizhou QIN, Weijun LI. Multi-relation approximate reasoning model based on uncertain knowledge graph embedding [J]. Journal of Computer Applications, 2024, 44(6): 1751-1759. | 
| [10] | Jun FENG, Jiankang BI, Yiru HUO, Jiakuan LI. PIPNet: lightweight asphalt pavement crack image segmentation network [J]. Journal of Computer Applications, 2024, 44(5): 1520-1526. | 
| [11] | Wenshuo GAO, Xiaoyun CHEN. Point cloud classification network based on node structure [J]. Journal of Computer Applications, 2024, 44(5): 1471-1478. | 
| [12] | Min SUN, Qian CHENG, Xining DING. CBAM-CGRU-SVM based malware detection method for Android [J]. Journal of Computer Applications, 2024, 44(5): 1539-1545. | 
| [13] | Xiaogang SONG, Dongdong ZHANG, Pengfei ZHANG, Li LIANG, Xinhong HEI. Real-time object detection algorithm for complex construction environments [J]. Journal of Computer Applications, 2024, 44(5): 1605-1612. | 
| [14] | Huantong GENG, Zhenyu LIU, Jun JIANG, Zichen FAN, Jiaxing LI. Embedded road crack detection algorithm based on improved YOLOv8 [J]. Journal of Computer Applications, 2024, 44(5): 1613-1618. | 
| [15] | Bin XIAO, Yun GAN, Min WANG, Xingpeng ZHANG, Zhaoxing WANG. Network abnormal traffic detection based on port attention and convolutional block attention module [J]. Journal of Computer Applications, 2024, 44(4): 1027-1034. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||