Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (10): 3275-3282.DOI: 10.11772/j.issn.1001-9081.2021091613
• Frontier and comprehensive applications • Previous Articles Next Articles
Jingyi QU1, Liu YANG1, Xuyang CHEN1, Qian WANG2
Received:
2021-09-13
Revised:
2022-01-05
Accepted:
2022-01-11
Online:
2022-04-15
Published:
2022-10-10
Contact:
Jingyi QU
About author:
QU Jingyi, born in 1978, Ph. D. , professor. Her research interests include big data of air transportation, deep learning.Supported by:
屈景怡1, 杨柳1, 陈旭阳1, 王茜2
通讯作者:
屈景怡
作者简介:
第一联系人:屈景怡(1978—),女,天津人,教授,博士,主要研究方向:航空运输大数据、深度学习; qujingyicauc@163.com基金资助:
CLC Number:
Jingyi QU, Liu YANG, Xuyang CHEN, Qian WANG. Flight delay prediction model based on Conv-LSTM with spatiotemporal sequence[J]. Journal of Computer Applications, 2022, 42(10): 3275-3282.
屈景怡, 杨柳, 陈旭阳, 王茜. 基于时空序列的Conv-LSTM航班延误预测模型[J]. 《计算机应用》唯一官方网站, 2022, 42(10): 3275-3282.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021091613
网络层 | 输出维度 | 参数量 |
---|---|---|
Reshape | (15,8,9,1) | 0 |
Conv-LSTM-1 | (15,8,9,8) | 1 472 |
Batch-Normalization-1 | (15,8,9,8) | 32 |
Conv-LSTM-2 | (15,8,9,16) | 9 280 |
Batch-Normalization-2 | (15,8,9,16) | 64 |
Conv-LSTM-3 | (15,8,9,8) | 5 792 |
Batch-Normalization-3 | (15,8,9,8) | 32 |
Flatten | (8 640) | 0 |
Dense | (5) | 43 205 |
Tab. 1 Composition of network structure and number of parameters
网络层 | 输出维度 | 参数量 |
---|---|---|
Reshape | (15,8,9,1) | 0 |
Conv-LSTM-1 | (15,8,9,8) | 1 472 |
Batch-Normalization-1 | (15,8,9,8) | 32 |
Conv-LSTM-2 | (15,8,9,16) | 9 280 |
Batch-Normalization-2 | (15,8,9,16) | 64 |
Conv-LSTM-3 | (15,8,9,8) | 5 792 |
Batch-Normalization-3 | (15,8,9,8) | 32 |
Flatten | (8 640) | 0 |
Dense | (5) | 43 205 |
参数 | 值 | 参数 | 值 |
---|---|---|---|
损失函数 | 交叉熵 | 卷积核大小 | 3×3 |
学习率 | 0.000 01 | 序列长度 | 15 |
优化器 | Adam( | 批处理大小 | 256 |
批归一化 | 迭代次数 | 100 | |
每层滤波器的个数 | 4/8/4 |
Tab. 2 Parameters of experimental environment
参数 | 值 | 参数 | 值 |
---|---|---|---|
损失函数 | 交叉熵 | 卷积核大小 | 3×3 |
学习率 | 0.000 01 | 序列长度 | 15 |
优化器 | Adam( | 批处理大小 | 256 |
批归一化 | 迭代次数 | 100 | |
每层滤波器的个数 | 4/8/4 |
数据集 | 数据量 | 准确率/% |
---|---|---|
航班数据 | 59 724 | 83.58 |
航班融合1 min气象 | 58 586 | 85.26 |
航班融合10 min气象 | 591 858 | 99.22 |
Tab. 3 Influence of meteorological data on accuracy
数据集 | 数据量 | 准确率/% |
---|---|---|
航班数据 | 59 724 | 83.58 |
航班融合1 min气象 | 58 586 | 85.26 |
航班融合10 min气象 | 591 858 | 99.22 |
序列长度 | 每轮训练时间/s | 准确率/% |
---|---|---|
1 | 71 | 98.94 |
3 | 126 | 98.95 |
5 | 180 | 98.89 |
7 | 239 | 98.99 |
9 | 297 | 99.02 |
11 | 351 | 99.06 |
13 | 422 | 99.15 |
15 | 465 | 99.22 |
17 | 748 | 99.20 |
Tab. 4 Influence of sequence length on accuracy and training time
序列长度 | 每轮训练时间/s | 准确率/% |
---|---|---|
1 | 71 | 98.94 |
3 | 126 | 98.95 |
5 | 180 | 98.89 |
7 | 239 | 98.99 |
9 | 297 | 99.02 |
11 | 351 | 99.06 |
13 | 422 | 99.15 |
15 | 465 | 99.22 |
17 | 748 | 99.20 |
数据集 | Conv-2D | Bi-LSTM | Conv-LSTM | ||||
---|---|---|---|---|---|---|---|
LSTM-1 | LSTM-2 | LSTM-3 | Conv-LSTM-1 | Conv-LSTM-2 | Conv-LSTM-3 | ||
平均值 | 95.85 | 96.63 | 97.40 | 97.56 | 96.99 | 97.84 | 98.21 |
ZBAA | 96.21 | 97.01 | 97.57 | 97.85 | 97.23 | 98.07 | 98.36 |
ZBAD | 97.06 | 96.52 | 97.25 | 97.48 | 97.37 | 97.88 | 98.02 |
ZBTJ | 92.70 | 95.26 | 96.15 | 96.20 | 95.02 | 96.45 | 97.25 |
ZBSJ | 97.44 | 97.74 | 98.64 | 98.72 | 98.35 | 98.96 | 99.22 |
Tab. 5 Accuracy comparison of different models on different datasets
数据集 | Conv-2D | Bi-LSTM | Conv-LSTM | ||||
---|---|---|---|---|---|---|---|
LSTM-1 | LSTM-2 | LSTM-3 | Conv-LSTM-1 | Conv-LSTM-2 | Conv-LSTM-3 | ||
平均值 | 95.85 | 96.63 | 97.40 | 97.56 | 96.99 | 97.84 | 98.21 |
ZBAA | 96.21 | 97.01 | 97.57 | 97.85 | 97.23 | 98.07 | 98.36 |
ZBAD | 97.06 | 96.52 | 97.25 | 97.48 | 97.37 | 97.88 | 98.02 |
ZBTJ | 92.70 | 95.26 | 96.15 | 96.20 | 95.02 | 96.45 | 97.25 |
ZBSJ | 97.44 | 97.74 | 98.64 | 98.72 | 98.35 | 98.96 | 99.22 |
1 | 李娟,曾维理,刘丹丹,等. 基于时空长短期记忆网络的机场航班延误预测[C/OL]// 2019世界交通运输大会论文集. [2021-07-28].. |
LI J, ZENG W L, LIU D D, et al. Spatial-temporal long short-term memory networks for airport flight delay prediction[C/OL]// Proceedings of the 2019 World Transport Convention.[2021-07-28].. | |
2 | LUO C Y, LI X T, YE Y M. PFST-LSTM: a spatiotemporal LSTM model with pseudoflow prediction for precipitation nowcasting[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 843-857. 10.1109/jstars.2020.3040648 |
3 | ZHANG H, SONG C Y, ZHANG J, et al. A multi-step airport delay prediction model based on spatial-temporal correlation and auxiliary features[J]. IET Intelligent Transport Systems, 2021, 15(7): 916-928. 10.1049/itr2.12071 |
4 | ZHANG K, JIANG Y S, LIU D H, et al. Spatio-temporal data mining for aviation delay prediction[C]// Proceedings of the IEEE 39th International Performance Computing and Communications Conference. Piscataway: IEEE, 2020: 1-7. 10.1109/ipccc50635.2020.9391561 |
5 | ZHOU P, SHI W, TIAN J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsburg, PA: Association for Computational Linguistics, 2016: 207-212. 10.18653/v1/p16-2034 |
6 | ZHANG H, SONG C Y, WANG H, et al. Airport delay prediction based on spatiotemporal analysis and Bi-LSTM sequence learning[C]// Proceedings of the 2019 Chinese Automation Congress. Piscataway: IEEE, 2019: 5080-5085. 10.1109/cac48633.2019.8996754 |
7 | 屈景怡,曹磊,陈敏,等. 基于团簇随机连接的CliqueNet航班延误预测模型[J]. 计算机应用, 2020, 40(8):2420-2427. 10.11772/j.issn.1001-9081.2019112061 |
QU J Y, CAO L, CHEN M, et al. CliqueNet flight delay prediction model based on clique random connection[J]. Journal of Computer Applications, 2020, 40(8): 2420-2427. 10.11772/j.issn.1001-9081.2019112061 | |
8 | 吴仁彪,李佳怡,屈景怡. 基于双通道卷积神经网络的航班延误预测模型[J]. 计算机应用, 2018, 38(7):2100-2106, 2112. 10.11772/j.issn.1001-9081.2018010037 |
WU R B, LI J Y, QU J Y. Flight delay prediction model based on dual-channel convolutional neural network[J]. Journal of Computer Applications, 2018, 38(7): 2100-2106, 2112. 10.11772/j.issn.1001-9081.2018010037 | |
9 | 屈景怡,叶萌,渠星. 基于区域残差和LSTM网络的机场延误预测模型[J]. 通信学报, 2019, 40(4):149-159. 10.11959/j.issn.1000-436x.2019091 |
QU J Y, YE M, QU X. Airport delay prediction model based on regional residual and LSTM network[J]. Journal on Communications, 2019, 40(4): 149-159. 10.11959/j.issn.1000-436x.2019091 | |
10 | CHEN W, LI Z P, LIU C, et al. A deep learning model with Conv-LSTM networks for subway passenger congestion delay prediction[J]. Journal of Advanced Transportation, 2021, 2021: No.6645214. 10.1155/2021/6645214 |
11 | 吴仁彪,赵婷,屈景怡. 基于深度SE-DenseNet的航班延误预测模型[J]. 电子与信息学报, 2019, 41(6):1510-1517. 10.11999/JEIT180644 |
WU R B, ZHAO T, QU J Y. Flight delay prediction model based on deep SE-DenseNet[J]. Journal of Electronics and Information Technology, 2019, 41(6): 1510-1517. 10.11999/JEIT180644 | |
12 | 吴仁彪,赵娅倩,屈景怡,等. 基于CBAM- CondenseNet的航班延误波及预测模型[J]. 电子与信息学报, 2021, 43(1):187-195. 10.11999/JEIT190794 |
WU R B, ZHAO Y Q, QU J Y, et al. Flight delay propagation prediction model based on CBAM-CondenseNet[J]. Journal of Electronics and Information Technology, 2021, 43(1): 187-195. 10.11999/JEIT190794 | |
13 | QU J Y, ZHAO T, YE M, et al. Flight delay prediction using deep convolutional neural network based on fusion of meteorological data[J]. Neural Processing Letters, 2020, 52(2): 1461-1484. 10.1007/s11063-020-10318-4 |
14 | PROKHORENKOVA L, GUSEV G, VOROBEV A, et al. CatBoost: unbiased boosting with categorical features[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 6639-6649. |
15 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. 10.1162/neco.1997.9.8.1735 |
16 | ZHOU J, XU W. End-to-end learning of semantic role labeling using recurrent neural networks[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2015: 1127-1137. 10.3115/v1/p15-1109 |
17 | SHI X J, CHEN Z R, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015: 802-810. |
[1] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[2] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[3] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[4] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[5] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[6] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[7] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[8] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[9] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. |
[10] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[11] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. |
[12] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
[13] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[14] | Zhi ZHANG, Xin LI, Naifu YE, Kaixi HU. DKP: defending against model stealing attacks based on dark knowledge protection [J]. Journal of Computer Applications, 2024, 44(7): 2080-2086. |
[15] | Yajuan ZHAO, Fanjun MENG, Xingjian XU. Review of online education learner knowledge tracing [J]. Journal of Computer Applications, 2024, 44(6): 1683-1698. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||