1 |
DWORK C. Differential privacy: a survey of results[C]// Proceedings of the 2008 International Conference on Theory and Applications of Models of Computation, LNCS 4978. Berlin: Springer, 2008:1-19.
|
2 |
HUANG Z X. Clustering large data sets with mixed numeric and categorical values[C]// Proceedings of the 1st Pacific-Asia Conference on Knowledge Discovery and Data Mining. Cham: Springer, 1997: 21-34.
|
3 |
王巧玲,乔非,蒋友好. 基于聚合距离参数的改进K-means算法[J]. 计算机应用, 2019, 39(9): 2586-2590. 10.11772/j.issn.1001-9081.2019030485
|
|
WANG Q L, QIAO F, JIANG Y H. Improved K-means algorithm based on aggregation distance parameter[J]. Journal of Computer Applications, 2019, 39(9): 2586-2590. 10.11772/j.issn.1001-9081.2019030485
|
4 |
李仁侃,叶东毅. 粗糙K-Modes聚类算法[J]. 计算机应用, 2011, 31(1): 97-100. 10.3724/sp.j.1087.2011.00097
|
|
LI R K, YE D Y. Rough K-Modes clustering algorithm[J]. Journal of Computer Applications, 2011, 31(1): 97-100. 10.3724/sp.j.1087.2011.00097
|
5 |
叶青青,孟小峰,朱敏杰,等. 本地化差分隐私研究综述[J]. 软件学报. 2018, 29(7): 1981-2005.
|
|
YE Q Q, MENG X F, ZHU M J, et al. Survey on local differential privacy[J]. Journal of Software, 2018, 29(7):1981-2005.
|
6 |
WANG T, ZHANG X F, FENG J Y, et al. A comprehensive survey on local differential privacy toward data statistics and analysis[J]. Sensors, 2020, 20(24): No.7030. 10.3390/s20247030
|
7 |
ERLINGSSON Ú, PIHUR V, KOROLOVA A. RAPPOR: randomized aggregatable privacy-preserving ordinal response[C]// Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2014: 1054-1067. 10.1145/2660267.2660348
|
8 |
WARNER S L. Randomized response: a survey technique for eliminating evasive answer bias[J]. Journal of the American Statistical Association, 1965, 60(309): 63-69. 10.1080/01621459.1965.10480775
|
9 |
NGUYÊN T T, XIAO X K, YANG Y, et al. Collecting and analyzing data from smart device users with local differential privacy[EB/OL]. (2016-06-16) [2021-10-08]..
|
10 |
BLUM A, DWORK C, McSHERRY F, et al. Practical privacy: the SuLQ framework[C]// Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. New York: ACM, 2005: 128-138. 10.1145/1065167.1065184
|
11 |
REN J, XIONG J B, YAO Z Q, et al. DPLK-means: a novel differential privacy K-means mechanism[C]// Proceedings of the IEEE 2nd International Conference on Data Science in Cyberspace. Piscataway: IEEE, 2017: 133-139. 10.1109/dsc.2017.64
|
12 |
ZHANG Y L, LIU N, WANG S P. A differential privacy protecting K-means clustering algorithm based on contour coefficients[J]. PLoS ONE, 2018, 13(11): No.e206832. 10.1371/journal.pone.0206832
|
13 |
陈恒恒,倪志伟,朱旭辉,等. 基于聚类分析的差分隐私高维数据发布方法[J]. 计算机应用, 2021, 41(9): 2578-2585. 10.11772/j.issn.1001-9081.2020111786
|
|
CHEN H H, NI Z W, ZHU X H, et al. Differential privacy high-dimensional data publishing method based on clustering analysis[J]. Journal of Computer Applications, 2021, 41(9): 2578-2585. 10.11772/j.issn.1001-9081.2020111786
|
14 |
XIA C, HUA J Y, TONG W, et al. Distributed K-Means clustering guaranteeing local differential privacy[J]. Computers and Security, 2020, 90: No.101699. 10.1016/j.cose.2019.101699
|
15 |
彭春春,陈燕俐,荀艳梅. 支持本地化差分隐私保护的k-modes聚类方法[J]. 计算机科学, 2021, 48(2): 105-113. 10.11896/jsjkx.200700172
|
|
PENG C C, CHEN Y L, XUN Y M. k-modes clustering method supporting localized differential privacy protection[J]. Computer Science, 2021, 48(2): 105-113. 10.11896/jsjkx.200700172
|
16 |
LV Z F, WANG L R, GUAN Z T, et al. An optimizing and differentially private clustering algorithm for mixed data in SDN-based smart grid[J]. IEEE Access, 2019, 7: 45773-45782. 10.1109/access.2019.2909048
|
17 |
DUCHI J C, JORDAN M I, WAINWRIGHT M J. Local privacy and statistical minimax rates[C]// Proceedings of the 51st Annual Allerton Conference on Communication, Control, and Computing. Piscataway: IEEE, 2013: 1592-1592. 10.1109/allerton.2013.6736718
|
18 |
McSHERRY F D. Privacy integrated queries: an extensible platform for privacy-preserving data analysis[C]// Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2009: 19-30. 10.1145/1559845.1559850
|
19 |
贾子琪,宋玲. 一种面向混合型数据聚类的k-prototypes聚类算法[J]. 小型微型计算机系统, 2020, 41(9): 1845-1852. 10.3969/j.issn.1000-1220.2020.09.009
|
|
JIA Z Q, SONG L. k-prototypes clustering algorithm for mixed data clustering[J]. Journal of Chinese Computer Systems, 2020, 41(9): 1845-1852. 10.3969/j.issn.1000-1220.2020.09.009
|
20 |
廖纪勇,吴晟,刘爱莲. 基于相异性度量选取初始聚类中心改进的K-means聚类算法[J]. 控制与决策, 2021, 36(12):3083-3090. 10.13195/j.kzyjc.2020.0554
|
|
LIAO J Y, WU S, LIU A L. Improved K-means clustering algorithm for selecting initial clustering centers based on dissimilarity measure[J]. Control and Decision, 2021, 36(12):3083-3090. 10.13195/j.kzyjc.2020.0554
|
21 |
JIANG H, YI S H, LI J, et al. Ant clustering algorithm with K-harmonic means clustering[J]. Expert Systems with Applications, 2010, 37(12): 8679-8684. 10.1016/j.eswa.2010.06.061
|
22 |
NISSIM K, RASKHODNIKOVA S, SMITH A. Smooth sensitivity and sampling in private data analysis[C]// Proceedings of the 39th Annual ACM Symposium on Theory of Computing. New York: ACM, 2007: 75-84. 10.1145/1250790.1250803
|
23 |
李顺勇,顾嘉成. 一种增强的K-prototypes混合数据聚类算法[J]. 陕西科技大学学报, 2021, 39(2):183-188. 10.3969/j.issn.1000-5811.2021.02.028
|
|
LI S Y, GU J C. An enhanced K-prototypes mixed data clustering algorithm[J]. Journal of Shaanxi University of Science and Technology, 2021, 39(2):183-188. 10.3969/j.issn.1000-5811.2021.02.028
|