Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (12): 3756-3762.DOI: 10.11772/j.issn.1001-9081.2021101765
Special Issue: 数据科学与技术
• Data science and technology • Previous Articles Next Articles
Received:
2021-10-14
Revised:
2021-12-25
Accepted:
2021-12-27
Online:
2022-01-19
Published:
2022-12-10
Contact:
Fangyu LIANG
About author:
WEN Wen, born in 1981, Ph. D., professor. Her research interests include sequential data mining, graph representation learning.
Supported by:
通讯作者:
梁方宇
作者简介:
温雯(1981—),女,江西赣州人,教授,博士,CCF会员,主要研究方向:时序数据挖掘、图表示学习
基金资助:
CLC Number:
Wen WEN, Fangyu LIANG. Sequential behavior recommendation based on user’s latent state and dependency learning[J]. Journal of Computer Applications, 2022, 42(12): 3756-3762.
温雯, 梁方宇. 基于用户潜在状态及依赖关系学习的时序行为推荐[J]. 《计算机应用》唯一官方网站, 2022, 42(12): 3756-3762.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021101765
符号 | 说明 |
---|---|
用户集合,物品(事件)集合 | |
表示物品e的序列号 | |
表示第t时期的用户-物品交互矩阵 | |
第t个时期中第j个时段的用户-物品交互向量 | |
用户(物品)参数矩阵 | |
用户特征向量 | |
物品(事件)特征向量 | |
用户在第t个时期中第j个时段的潜在状态 | |
用户在第t个时期中第j个时段的预测潜在状态 | |
算法学习参数 | |
一个时期的长度 | |
d | 潜在状态的维度大小 |
Tab. 1 Description of symbols
符号 | 说明 |
---|---|
用户集合,物品(事件)集合 | |
表示物品e的序列号 | |
表示第t时期的用户-物品交互矩阵 | |
第t个时期中第j个时段的用户-物品交互向量 | |
用户(物品)参数矩阵 | |
用户特征向量 | |
物品(事件)特征向量 | |
用户在第t个时期中第j个时段的潜在状态 | |
用户在第t个时期中第j个时段的预测潜在状态 | |
算法学习参数 | |
一个时期的长度 | |
d | 潜在状态的维度大小 |
数据集 | 用户数 | 物品数 | 历史数 | 划分时间戳 |
---|---|---|---|---|
IPTV | 2 920 | 32 341 | 2 227 811 | Nov 2, 2015 |
NYC | 1 083 | 38 333 | 227 428 | Jan 1, 2013 |
TKY | 2 293 | 61 858 | 573 703 | Jan1, 2013 |
Tab. 2 Statistics of datasets used in experiments
数据集 | 用户数 | 物品数 | 历史数 | 划分时间戳 |
---|---|---|---|---|
IPTV | 2 920 | 32 341 | 2 227 811 | Nov 2, 2015 |
NYC | 1 083 | 38 333 | 227 428 | Jan 1, 2013 |
TKY | 2 293 | 61 858 | 573 703 | Jan1, 2013 |
基线算法 | IPTV | NYC | TKY | ||||||
---|---|---|---|---|---|---|---|---|---|
Recall@5 | NDCG@5 | MAP@5 | Recall@5 | NDCG@5 | MAP@5 | Recall@5 | NDCG@5 | MAP@5 | |
提高比率/% | 30.034 4 | 37.196 8 | 40.974 4 | 5.038 5 | 4.529 7 | 3.915 2 | 7.997 6 | 6.247 9 | 4.724 4 |
Mult-VAE | 0.112 2 | 0.177 9 | 0.168 8 | 0.133 9 | 0.119 9 | 0.101 4 | 0.125 8 | 0.119 1 | 0.096 7 |
HRM | 0.239 0 | 0.169 8 | 0.142 6 | 0.320 7 | 0.266 9 | 0.220 6 | 0.297 7 | 0.246 4 | 0.194 1 |
Caser | 0.217 7 | 0.145 6 | 0.118 0 | 0.325 9 | 0.271 6 | 0.224 8 | 0.314 6 | 0.266 4 | 0.213 7 |
HGN | 0.273 7 | 0.210 7 | 0.166 1 | 0.272 6 | 0.227 8 | 0.179 4 | |||
TIFU-KNN | 0.253 3 | 0.203 5 | 0.180 2 | ||||||
本文算法 | 0.3784 | 0.3054 | 0.2749 | 0.3544 | 0.3023 | 0.2548 | 0.3646 | 0.3197 | 0.2660 |
Tab. 3 Performance comparison with baseline algorithms
基线算法 | IPTV | NYC | TKY | ||||||
---|---|---|---|---|---|---|---|---|---|
Recall@5 | NDCG@5 | MAP@5 | Recall@5 | NDCG@5 | MAP@5 | Recall@5 | NDCG@5 | MAP@5 | |
提高比率/% | 30.034 4 | 37.196 8 | 40.974 4 | 5.038 5 | 4.529 7 | 3.915 2 | 7.997 6 | 6.247 9 | 4.724 4 |
Mult-VAE | 0.112 2 | 0.177 9 | 0.168 8 | 0.133 9 | 0.119 9 | 0.101 4 | 0.125 8 | 0.119 1 | 0.096 7 |
HRM | 0.239 0 | 0.169 8 | 0.142 6 | 0.320 7 | 0.266 9 | 0.220 6 | 0.297 7 | 0.246 4 | 0.194 1 |
Caser | 0.217 7 | 0.145 6 | 0.118 0 | 0.325 9 | 0.271 6 | 0.224 8 | 0.314 6 | 0.266 4 | 0.213 7 |
HGN | 0.273 7 | 0.210 7 | 0.166 1 | 0.272 6 | 0.227 8 | 0.179 4 | |||
TIFU-KNN | 0.253 3 | 0.203 5 | 0.180 2 | ||||||
本文算法 | 0.3784 | 0.3054 | 0.2749 | 0.3544 | 0.3023 | 0.2548 | 0.3646 | 0.3197 | 0.2660 |
1 | HAN J Y, ZHENG L, XU Y B, et al. Adaptive deep modeling of users and items using side information for recommendation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(3):737-748. 10.1109/tnnls.2019.2909432 |
2 | 刘华真,王巍,谷壬倩,等. 基于用户浏览行为的个性化推荐研究综述[J]. 计算机应用研究, 2021, 38(8):2268-2277. 10.19734/j.issn.1001-3695.2020.10.0347 |
LIU H Z, WANG W, GU R Q, et al. Survey of personalized recommendation study based on user browsing behavior[J]. Application Research of Computers, 2021, 38(8):2268-2277. 10.19734/j.issn.1001-3695.2020.10.0347 | |
3 | YANG D Q, ZHANG D Q, ZHENG V W, et al. Modeling user activity preference by leveraging user spatial temporal characteristics in LBSNs[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2015, 45(1):129-142. 10.1109/tsmc.2014.2327053 |
4 | WANG W Q, YIN H Z, DU X Z, et al. TPM: a temporal personalized model for spatial item recommendation[J]. ACM Transactions on Intelligent Systems and Technology, 2018, 9(6): No.61. 10.1145/3230706 |
5 | SALAKHUTDINOV R, MNIH A. Probabilistic matrix factorization[C]// Proceedings of the 20th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2007: 1257-1264. 10.1145/1390156.1390267 |
6 | KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8):30-37. 10.1109/mc.2009.263 |
7 | BARKAN O, KOENIGSTEIN N. Item2Vec: neural item embedding for collaborative filtering [C]// Proceedings of the IEEE 26th International Workshop on Machine Learning for Signal Processing. Piscataway: IEEE, 2016:1-6. 10.1109/mlsp.2016.7738886 |
8 | LIANG D W, KRISHNAN R G, HOFFMAN M D, et al. Variational autoencoders for collaborative filtering[C]// Proceedings of the 2018 World Wide Web Conference. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2018: 689-698. 10.1145/3178876.3186150 |
9 | KOREN Y. Collaborative filtering with temporal dynamics[C]// Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009: 447-456. 10.1145/1557019.1557072 |
10 | RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing personalized Markov chains for next-basket recommendation[C]// Proceedings of the 19th International Conference on World Wide Web. New York: ACM, 2010: 811-820. 10.1145/1772690.1772773 |
11 | HE R N, McAULEY J. Fusing similarity models with Markov chains for sparse sequential recommendation[C]// Proceedings of the IEEE 16th International Conference on Data Mining. Piscataway: IEEE, 2016: 191-200. 10.1109/icdm.2016.0030 |
12 | HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[EB/OL]. (2016-03-29) [2021-10-14].. |
13 | RANGAPURAM S S, SEEGER M, GASTHAUS J, et al. Deep state space models for time series forecasting[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 7796-7805. |
14 | LI L Y, YAN J C, YANG X K, et al. Learning interpretable deep state space model for probabilistic time series forecasting[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2019: 2901-2908. 10.24963/ijcai.2019/402 |
15 | KIPF T, van der POL E, WELLING M. Contrastive learning of structured world models[EB/OL]. (2020-01-05) [2021-10-14].. |
16 | TANG J X, WANG K. Personalized top-N sequential recommendation via convolutional sequence embedding[C]// Proceedings of the 11th ACM International Conference on Web Search and Data Mining. New York: ACM, 2018: 565-573. 10.1145/3159652.3159656 |
17 | MA C, KANG P, LIU X. Hierarchical gating networks for sequential recommendation[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 825-833. 10.1145/3292500.3330984 |
18 | HU H J, HE X N, GAO J Y, et al. Modeling personalized item frequency information for next-basket recommendation[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1071-1080. 10.1145/3397271.3401066 |
19 | 王娜,何晓明,刘志强,等. 一种基于用户播放行为序列的个性化视频推荐策略[J]. 计算机学报, 2020, 43(1):123-135. 10.11897/SP.J.1016.2020.00123 |
WANG N, HE X M, LIU Z Q, et al. Personalized video recommendation strategy based on user’s playback behavior sequence[J]. Chinese Journal of Computers, 2020, 43(1):123-135. 10.11897/SP.J.1016.2020.00123 | |
20 | 孙光福,吴乐,刘淇,等. 基于时序行为的协同过滤推荐算法[J]. 软件学报, 2013, 24(11):2721-2733. 10.3724/sp.j.1001.2013.04478 |
SUN G F, WU L, LIU Q, et al. Recommendations based on collaborative filtering by exploiting sequential behaviors[J]. Journal of Software, 2013, 24(11):2721-2733. 10.3724/sp.j.1001.2013.04478 | |
21 | YIN D W, HONG L J, XUE Z Z, et al. Temporal dynamics of user interests in tagging systems[C]// Proceedings of the 25th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2011:1279-1285. 10.1609/aaai.v25i1.8095 |
22 | ZHOU C, BAI J Z, SONG J S, et al. ATRank: an attention-based user behavior modeling framework for recommendation[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018:4564-4571. 10.1609/aaai.v32i1.11618 |
23 | 蔡海尼,牛冰慧,文俊浩,等. 基于时序模型和矩阵分解的推荐算法[J]. 计算机应用研究, 2018, 35(6):1624-1627, 1659. 10.3969/j.issn.1001-3695.2018.06.005 |
CAI H N, NIU B H, WEN J H, et al. Recommender algorithm based on time series model and matrix factorization[J]. Application Research of Computers, 2018, 35(6):1624-1627, 1659. 10.3969/j.issn.1001-3695.2018.06.005 | |
24 | YE W W, WANG S Q, CHEN X, et al. Time matters: sequential recommendation with complex temporal information[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1459-1468. 10.1145/3397271.3401154 |
25 | WANG P F, GUO J F, LAN Y Y, et al. Learning hierarchical representation model for next basket recommendation[C]// Proceedings of the 38th International ACM SIGIR conference on Research and Development in Information Retrieval. New York: ACM, 2015:403-412. 10.1145/2766462.2767694 |
26 | KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. (2017-01-30) [2021-10-14].. |
27 | HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[EB/OL]. (2012-07-03) [2021-10-14].. |
[1] | Xingyao YANG, Hongtao SHEN, Zulian ZHANG, Jiong YU, Jiaying CHEN, Dongxiao WANG. Sequential recommendation based on hierarchical filter and temporal convolution enhanced self-attention network [J]. Journal of Computer Applications, 2024, 44(10): 3090-3096. |
[2] | Runchao PAN, Qishan YU, Hongfei XIONG, Zhihui LIU. Collaborative recommendation algorithm based on deep graph neural network [J]. Journal of Computer Applications, 2023, 43(9): 2741-2746. |
[3] | Yu LING, Zhilong SHAN. Knowledge concept recommendation system based on interest enhancement [J]. Journal of Computer Applications, 2023, 43(12): 3697-3702. |
[4] | Lei TIAN, Lina GE. Advertising recommendation algorithm based on differential privacy [J]. Journal of Computer Applications, 2023, 43(11): 3346-3350. |
[5] | Xiaohan YANG, Guosheng HAO, Xiehua ZHANG, Zihao YANG. Collaborative filtering algorithm based on collaborative training and Boosting [J]. Journal of Computer Applications, 2023, 43(10): 3136-3141. |
[6] | Tengyue HAN, Shaozhang NIU, Wen ZHANG. Multimodal sequential recommendation algorithm based on contrastive learning [J]. Journal of Computer Applications, 2022, 42(6): 1683-1688. |
[7] | Meng YU, Wentao HE, Xuchuan ZHOU, Mengtian CUI, Keqi WU, Wenjie ZHOU. Review of recommendation system [J]. Journal of Computer Applications, 2022, 42(6): 1898-1913. |
[8] | Suqi ZHANG, Xinxin WANG, Shiyao SHE, Junhua GU. Knowledge graph recommendation model with multiple time scales and feature enhancement [J]. Journal of Computer Applications, 2022, 42(4): 1093-1098. |
[9] | YANG Li, WANG Shihui, ZHU Bo. Point-of-interest recommendation algorithm combing dynamic and static preferences [J]. Journal of Computer Applications, 2021, 41(2): 398-406. |
[10] | ZHU Simiao, Wei Shiwei, WEI Siheng, YU Dunhui. Video recommendation algorithm based on danmaku sentiment analysis and topic model [J]. Journal of Computer Applications, 2021, 41(10): 2813-2819. |
[11] | TIAN Baojun, LIU Shuang, FANG Jiandong. Hybrid recommendation algorithm by fusion of topic information and convolution neural network [J]. Journal of Computer Applications, 2020, 40(7): 1901-1907. |
[12] | ZHANG Junru, ZHAO Xiaoyan, YUAN Peiyan. Federated security tree algorithm for user privacy protection [J]. Journal of Computer Applications, 2020, 40(10): 2980-2985. |
[13] | LI Bo, ZHANG Xiao, YAN Jingyi, LI Kewei, LI Heng, LING Yulong, ZHANG Yong. Application of KNN algorithm based on value difference metric and clustering optimization in bank customer behavior prediction [J]. Journal of Computer Applications, 2019, 39(9): 2784-2788. |
[14] | WANG Lei, REN Hang, GONG Kai. Social recommendation method based on multi-dimensional trust and collective matrix factorization [J]. Journal of Computer Applications, 2019, 39(5): 1269-1274. |
[15] | FAN Wei, XIE Cong, XIAO Chunjing, CAO Shuyan. Random walking recommendation algorithm based on combinational category space [J]. Journal of Computer Applications, 2019, 39(4): 984-988. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||