| 1 | ZHENG G J, ZHANG F Z, ZHENG Z H, et al. DRN: a deep reinforcement learning framework for news recommendation[C]// Proceedings of the 2018 World Wide Web Conference. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2018: 167-176.  10.1145/3178876.3185994 | 
																													
																							| 2 | DIAO Q M, QIU M H, WU C Y, et al. Jointly Modeling Aspects, Ratings and Sentiments for movie recommendation (JMARS)[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 193-202.  10.1145/2623330.2623758 | 
																													
																							| 3 | ZHOU G R, ZHU X Q, SONG C R, et al. Deep interest network for click-through rate prediction[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018:1059-1068.  10.1145/3219819.3219823 | 
																													
																							| 4 | MA R F, ZHANG Q, WANG J W. Mention recommendation for multimodal microblog with cross-attention memory network[C]// Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2018: 195-204.  10.1145/3209978.3210026 | 
																													
																							| 5 | WANG N, WANG H N, JIA Y L, et al. Explainable recommendation via multi-task learning in opinionated text data[C]// Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2018: 165-174.  10.1145/3209978.3210010 | 
																													
																							| 6 | WANG X, WANG D X, XU C R, et al. Explainable reasoning over knowledge graphs for recommendation[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019:5329-5336.  10.1609/aaai.v33i01.33015329 | 
																													
																							| 7 | HUANG J, ZHAO W X, DOU H J, et al. Improving sequential recommendation with knowledge enhanced memory networks[C]// Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2018:505-514.  10.1145/3209978.3210017 | 
																													
																							| 8 | 顾军华,佘士耀,樊帅,等. 基于用户长短期兴趣与知识图卷积网络的推荐[J]. 计算机工程与科学, 2021, 43(3):511-517.  10.3969/j.issn.1007-130X.2021.03.017 | 
																													
																							|  | GU J H, SHE S Y, FAN S, et al. Recommendation based on users’ long- and short-term interests and knowledge graph convolution network[J]. Computer Engineering and Science, 2021, 43(3): 511-517.  10.3969/j.issn.1007-130X.2021.03.017 | 
																													
																							| 9 | WANG H W, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems[C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 3307-3313.  10.1145/3308558.3313417 | 
																													
																							| 10 | TANG X L, WANG T Y, YANG H Z, et al. AKUPM: attention enhanced knowledge-aware user preference model for recommendation[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 1891-1899.  10.1145/3292500.3330705 | 
																													
																							| 11 | WANG X, HE X N, CAO Y X, et al. KGAT: knowledge graph attention network for recommendation[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 950-958.  10.1145/3292500.3330989 | 
																													
																							| 12 | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. (2018-02-04) [2021-03-20].. | 
																													
																							| 13 | WIESE S L, VALLACHER R R, STRAWINSKA U. Dynamical social psychology: complexity and coherence in human experience[J]. Social and Personality Psychology Compass, 2010, 4(11):1018-1030.  10.1111/j.1751-9004.2010.00319.x | 
																													
																							| 14 | YU X, REN X, SUN Y Z, et al. Personalized entity recommendation: a heterogeneous information network approach[C]// Proceedings of the 7th ACM International Conference on Web Search and Data Mining. New York: ACM, 2014: 283-292.  10.1145/2556195.2556259 | 
																													
																							| 15 | ZHANG F Z, YUAN N J, LIAN D F, et al. Collaborative knowledge base embedding for recommender systems[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 353-362.  10.1145/2939672.2939673 | 
																													
																							| 16 | BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2013: 2787-2795.  10.1007/978-3-662-44848-9_28 | 
																													
																							| 17 | RENDLE S. Factorization machines with LibFM[J]. ACM Transactions on Intelligent Systems and Technology, 2012, 3(3): 57.  10.1145/2168752.2168771 | 
																													
																							| 18 | WANG H W, ZHANG F Z, WANG J L, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 417-426.  10.1145/3269206.3271739 | 
																													
																							| 19 | WANG Z, LIN G Y, TAN H B, et al. CKAN: collaborative knowledge-aware attentive network for recommender systems[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 219-228.  10.1145/3397271.3401141 |