[1] ZHANG Z, ZENG D D, ABBASI A, et al. A random walk model for item recommendation in social tagging systems[J]. ACM Transactions on Management Information Systems, 2013, 4(2):8. [2] FENG S, CAO J. Improving group recommendations via detecting comprehensive correlative information[J]. Multimedia Tools and Applications, 2017, 76(1):1355-1377. [3] XU G, FU B, GU Y. Point-of-interest recommendations via a supervised random walk algorithm[J]. IEEE Intelligent Systems, 2016, 31(1):15-23. [4] 刘梦娟, 王巍, 李杨曦, 等. AttentionRank+:一种基于关注关系与多用户行为的图推荐算法[J]. 计算机学报, 2017, 40(3):634-648. (LIU M J, WANG W, LI Y X, et al. AttentionRank+:a graph-based recommendation combining attention relationship and multi-behaviors[J]. Chinese Journal of Computers, 2017, 40(3):634-648.) [5] XIA F, CHEN Z, WANG W, et al. MVCWalker:random walk-based most valuable collaborators recommendation exploiting academic factors[J]. IEEE Transactions on Emerging Topics in Computing, 2014, 2(3):364-375. [6] YAO W, HE J, HUANG G, et al. A graph-based model for context-aware recommendation using implicit feedback data[J]. World Wide Web, 2015, 18(5):1351-1371. [7] WENG L T, XU Y, LI Y, et al. Exploiting item taxonomy for solving cold-start problem in recommendation making[C]//ICTAI 2008:Proceedings of the 20th IEEE International Conference on Tools with Artificial Intelligence. Piscataway, NJ:IEEE, 2008:113-120. [8] REN Y, LI G, ZHOU W. Modelling personal preferences for Top-N movie recommendations[J]. Web Intelligence and Agent Systems:an International Journal, 2014, 12(3):289-307. [9] MANZATO M G. Discovering latent factors from movies genres for enhanced recommendation[C]//RecSys 2012:Proceedings of the Sixth ACM Conference on Recommender Systems. New York:ACM, 2012:249-252. [10] CHOI S M, KO S K, HAN Y S. A movie recommendation algorithm based on genre correlations[J]. Expert Systems with Applications, 2012, 39(9):8079-8085. [11] HWANG T G, PARK C S, HONG J H, et al. An algorithm for movie classification and recommendation using genre correlation[J]. Multimedia Tools and Applications, 2016, 75(20):12843-12858. [12] HU L, SUN A, LIU Y. Your neighbors affect your ratings:on geographical neighborhood influence to rating prediction[C]//SIGIR 2014:Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM, 2014:345-354. [13] YANG J, SUN Z, BOZZON A, et al. Learning hierarchical feature influence for recommendation by recursive regularization[C]//RecSys 2016:Proceedings of the 10th ACM Conference on Recommender Systems. New York:ACM, 2016:51-58. [14] ZHANG Y, AHMED A, JOSIFOVSKI V, et al. Taxonomy discovery for personalized recommendation[C]//WSDM 2014:Proceedings of the 7th ACM International Conference on Web Search and Data Mining. New York:ACM, 2014:243-252. [15] SUN Z, GUO G, ZHANG J. Learning hierarchical category influence on both users and items for effective recommendation[C]//SAC 2017:Proceedings of the 32nd ACM SIGAPP Symposium on Applied Computing. New York:ACM, 2017:1679-1684. [16] SARWAR B, KARYPIS G, KONSTAN J, et al. Analysis of recommendation algorithms for e-commerce[C]//EC 2000:Proceedings of the 2nd ACM Conference on Electronic Commerce. New York:ACM, 2000:158-167. |