Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (11): 3588-3602.DOI: 10.11772/j.issn.1001-9081.2021122118
• Artificial intelligence • Previous Articles Next Articles
Received:
2021-12-18
Revised:
2022-02-12
Accepted:
2022-02-23
Online:
2022-03-02
Published:
2022-11-10
Contact:
Xionglin LUO
About author:
LEI Xia, born in 1989, Ph. D. candidate. Her research interests include machine learning, optimal control.Supported by:
通讯作者:
罗雄麟
作者简介:
雷霞(1989—),女,福建建瓯人,博士研究生,主要研究方向:机器学习、最优控制基金资助:
CLC Number:
Xia LEI, Xionglin LUO. Review on interpretability of deep learning[J]. Journal of Computer Applications, 2022, 42(11): 3588-3602.
雷霞, 罗雄麟. 深度学习可解释性研究综述[J]. 《计算机应用》唯一官方网站, 2022, 42(11): 3588-3602.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021122118
解释方法 | 典型方法 | 优缺点 |
---|---|---|
基于路径的方法 | KPRN[ | 结构简单,可解释性强,但效率不高,不适合复杂逻辑推理 |
基于嵌入的方法 | CF[ | 准确率较高,可适用于更高级的逻辑推理,但结构比较复杂,解释不够直观 |
Tab. 1 Overview of researches on interpretability models based on knowledge graph
解释方法 | 典型方法 | 优缺点 |
---|---|---|
基于路径的方法 | KPRN[ | 结构简单,可解释性强,但效率不高,不适合复杂逻辑推理 |
基于嵌入的方法 | CF[ | 准确率较高,可适用于更高级的逻辑推理,但结构比较复杂,解释不够直观 |
典型方法 | 实验数据集(应用网络) | 解释方法 | 优缺点 |
---|---|---|---|
DeConvNet[ | Caltech-101, Caltech-256, PASCAL VOC 2012 (AlexNet) | 可视化卷积神经网络各隐藏层的特征,并通过遮挡输入图像的不同区域并观察输出结果的变化,找到对模型决策影响最大的特征 | 通过可视化呈现隐层学习到的特征,解释直观,但并未对模型整体的决策做解释 |
影响函数[ | MNIST(Inception) | 使用影响函数的方法得到模型预测结果主要依据的样本特征,并且通过实验展示了模型对决策特征的归因 | 理论严谨,计算得到改变一个训练数据之后对模型参数和模型预测的影响,但解释不够直观 |
预测差异分析[ | ImageNet(AlexNet GoogLeNetVGG) | 通过找到每个输入特征的相关值来观察各个特征与模型决策之间的正相关和负相关,进而突出显示给定输入图像中提供支持或反对相应类的证据的区域 | 可同时得到正相关和负相关的解释, 可视化呈现解释直观,但计算较复杂,效率不高 |
RISE[ | PASCAL VOC07,MSCOCO2014 ImageNet(ResNet50, VGG16) | 基于随机输入采样的方法通过将输入图像与随机掩码逐元相乘得到的掩码图作为输入,然后对随机掩码进行加权平均得到解释图 | 在自动因果度量方面优于之前的解释方法,但不能解释视频和其他领域中复杂网络所做的决策 |
Tab. 2 Summary of existing researches on perturbation?based methods
典型方法 | 实验数据集(应用网络) | 解释方法 | 优缺点 |
---|---|---|---|
DeConvNet[ | Caltech-101, Caltech-256, PASCAL VOC 2012 (AlexNet) | 可视化卷积神经网络各隐藏层的特征,并通过遮挡输入图像的不同区域并观察输出结果的变化,找到对模型决策影响最大的特征 | 通过可视化呈现隐层学习到的特征,解释直观,但并未对模型整体的决策做解释 |
影响函数[ | MNIST(Inception) | 使用影响函数的方法得到模型预测结果主要依据的样本特征,并且通过实验展示了模型对决策特征的归因 | 理论严谨,计算得到改变一个训练数据之后对模型参数和模型预测的影响,但解释不够直观 |
预测差异分析[ | ImageNet(AlexNet GoogLeNetVGG) | 通过找到每个输入特征的相关值来观察各个特征与模型决策之间的正相关和负相关,进而突出显示给定输入图像中提供支持或反对相应类的证据的区域 | 可同时得到正相关和负相关的解释, 可视化呈现解释直观,但计算较复杂,效率不高 |
RISE[ | PASCAL VOC07,MSCOCO2014 ImageNet(ResNet50, VGG16) | 基于随机输入采样的方法通过将输入图像与随机掩码逐元相乘得到的掩码图作为输入,然后对随机掩码进行加权平均得到解释图 | 在自动因果度量方面优于之前的解释方法,但不能解释视频和其他领域中复杂网络所做的决策 |
解释目标 | 解释方法 | 典型方法 |
---|---|---|
解释逻辑规则 | 决策树 | 分解法(CRED [ |
KG | 基于路径(KPRN[ | |
解释决策归因 | 特征归因 | 基于扰动(DeConvNet[ 梯度反向传播(Saliency Maps[ 类激活映射(CAM[ 分层关联传播(Deep‑LIFT[ 基于代理模型(LIME[ |
概念归因 | TCAVs[ | |
样本归因 | Prototype selection[ | |
解释内部结构表示 | 层的表示 | DeConvNet[ |
神经元的表示 | 文献[ |
Tab. 3 Overview summary of literatures about interpretability
解释目标 | 解释方法 | 典型方法 |
---|---|---|
解释逻辑规则 | 决策树 | 分解法(CRED [ |
KG | 基于路径(KPRN[ | |
解释决策归因 | 特征归因 | 基于扰动(DeConvNet[ 梯度反向传播(Saliency Maps[ 类激活映射(CAM[ 分层关联传播(Deep‑LIFT[ 基于代理模型(LIME[ |
概念归因 | TCAVs[ | |
样本归因 | Prototype selection[ | |
解释内部结构表示 | 层的表示 | DeConvNet[ |
神经元的表示 | 文献[ |
1 | LEE S M, SEO J B, YUN J, et al. Deep learning applications in chest radiography and computed tomography[J]. Journal of Thoracic Imaging, 2019, 34(2): 75-85. 10.1097/rti.0000000000000387 |
2 | CHEN R P, YANG L, GOODISON S, et al. Deep‑learning approach identifying cancer subtypes using high‑dimensional genomic data[J]. Bioinformiatics, 2020, 36(5): 1476-1483. 10.1093/bioinformatics/btz769 |
3 | GRIGORESCU S, TRASNEA B, COCIAS T, et al. A survey of deep learning techniques for autonomous driving[J]. Journal of Field Robotics, 2020, 37(3): 362-386. 10.1002/rob.21918 |
4 | FENG D, HAASE‑SCHÜTZ C, ROSENBAUM L, et al. Deep multi‑modal object detection and semantic segmentation for autonomous driving: Datasets, methods, and challenges[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3): 1341-1360. 10.1109/TITS.2020.2972974 |
5 | SAHBA A, DAS A, RAD P, et al. Image graph production by dense captioning[C]// Proceedings of the 2018 World Automation Congress. Piscataway: IEEE, 2018: 1-5. 10.23919/wac.2018.8430485 |
6 | BENDRE N, EBADI N, PREVOST J J, et al. Human action performance using deep neuro‑fuzzy recurrent attention model[J]. IEEE Access, 2020, 8: 57749-57761. 10.1109/access.2020.2982364 |
7 | BOLES A, RAD P. Voice biometrics: deep learning‑based voiceprint authentication system[C]// Proceedings of the 12th System of Systems Engineering Conference. Piscataway: IEEE, 2017: 1-6. 10.1109/sysose.2017.7994971 |
8 | PANWAR S, DAS A, ROOPAEI M, et al. A deep learning approach for mapping music genres[C]// Proceedings of the 12th System of Systems Engineering Conference. Piscataway: IEEE, 2017: 1-5. 10.1109/sysose.2017.7994970 |
9 | DE LA TORRE PARRA G, RAD P, CHOO K K R, et al. Detecting Internet of Things attacks using distributed deep learning[J]. Journal of Network and Computer Applications, 2020, 163: No.102662. 10.1016/j.jnca.2020.102662 |
10 | CHACON H, SILVA S, RAD P. Deep learning poison data attack detection[C]// Proceedings of the IEEE 31st International Conference on Tools with Artificial Intelligence. Piscataway: IEEE, 2019: 971-978. 10.1109/ictai.2019.00137 |
11 | MHASKAR H N, POGGIO T. Deep vs. shallow networks: an approximation theory perspective[J]. Analysis and Applications, 2016, 14(6): 829-848. 10.1142/s0219530516400042 |
12 | LIAO Q L, POGGIO T. Theory of deep learning Ⅱ: landscape of the empirical risk in deep learning: CBMM Memo No.066[EB/OL]. (2017-06-23) [2021-09-23].. |
13 | ZHANG C Y, LIAO Q L, RAKHLIN A, et al. Musings on deep learning: properties of SGD, CBMM Memo Series 067[EB/OL]. (2017-12-26) [2021-09-23].. |
14 | CINÀ A E, TORCINOVICH A, PELILLO M. A black‑box adversarial attack for poisoning clustering[J]. Pattern Recognition, 2022, 122: No.108306. 10.1016/j.patcog.2021.108306 |
15 | SEMWAL P, HANDA A. Cyber‑attack detection in cyber‑physical systems using supervised machine learning[M]// CHOO K K R, DEHGHANTANHA A. Handbook of Big Data Analytics and Forensics. Cham: Springer, 2022: 131-140. 10.1007/978-3-030-74753-4_9 |
16 | ENGSTROM L, TRAN B, TSIPRAS D, et al. Exploring the landscape of spatial robustness[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 1802-1811. 10.23915/distill.00019.7 |
17 | SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[EB/OL]. (2014-02-19) [2021-05-16].. |
18 | NGUYEN A, YOSINSKI J, CLUNE J. Deep neural networks are easily fooled: high confidence predictions for unrecognizable images[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 427-436. 10.1109/cvpr.2015.7298640 |
19 | HENGSTLER M, ENKEL E, DUELLI S. Applied artificial intelligence and trust — the case of autonomous vehicles and medical assistance devices[J]. Technological Forecasting and Social Change, 2016, 105: 105-120. 10.1016/j.techfore.2015.12.014 |
20 | LUI A, LAMB G W. Artificial intelligence and augmented intelligence collaboration: regaining trust and confidence in the financial sector[J]. Information and Communications Technology Law, 2018, 27(3): 267-283. 10.1080/13600834.2018.1488659 |
21 | WELD D S, BANSAL G. The challenge of crafting intelligible intelligence[J]. Communications of the ACM, 2019, 62(6): 70-79. 10.1145/3282486 |
22 | BOSTROM N, YUDKOWSKY E. The ethics of artificial intelligence[M]// FRANKISH K, RAMSEY W M. The Cambridge Handbook of Artificial Intelligence Cambridge: Cambridge University Press, 2014: 316-334. 10.1017/cbo9781139046855.020 |
23 | ETZIONI A, ETZIONI O. Incorporating ethics into artificial intelligence[J]. The Journal of Ethics, 2017, 21(4): 403-418. 10.1007/s10892-017-9252-2 |
24 | STAHL B C, WRIGHT D. Ethics and privacy in ai and big data: implementing responsible research and innovation[J]. IEEE Security and Privacy, 2018, 16(3): 26-33. 10.1109/msp.2018.2701164 |
25 | KESKINBORA K H. Medical ethics considerations on artificial intelligence[J]. Journal of Clinical Neuroscience, 2019, 64: 277-282. 10.1016/j.jocn.2019.03.001 |
26 | CHEN L Y, CRUZ A, RAMSEY S, et al. Hidden bias in the DUD‑E dataset leads to misleading performance of deep learning in structure‑based virtual screening[J]. PLoS ONE, 2019, 14(8): No.e0220113. 10.1371/journal.pone.0220113 |
27 | CHALLEN R, DENNY J, PITT M, et al. Artificial intelligence, bias and clinical safety[J]. BMJ Quality and Safety, 2019, 28(3):231-237. 10.1136/bmjqs-2018-008370 |
28 | SINZ F H, PITKOW X, REIMER J, et al. Engineering a less artificial intelligence[J]. Neuron, 2019, 103(6): 967-979. 10.1016/j.neuron.2019.08.034 |
29 | KURAKIN A, GOODFELLOW I J, BENGIO S. Adversarial machine learning at scale[EB/OL]. (2017-02-11) [2021-07-09].. 10.1201/9781351251389-8 |
30 | GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[EB/OL]. (2015-03-20) [2021-05-16].. |
31 | SU J W, VARGAS D V, SAKURAI K. One pixel attack for fooling deep neural networks[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(5): 828-841. 10.1109/tevc.2019.2890858 |
32 | HUANG S, PAPERNOT N, GOODFELLOW I, et al. Adversarial attacks on neural network policies[EB/OL]. (2017-02-08) [2020-05-16].. |
33 | GOODMAN B, FLAXMAN S. European Union regulations on algorithmic decision‑making and a “right to explanation”[J]. AI Magazine, 2017, 38(3): 50-57. 10.1609/aimag.v38i3.2741 |
34 | CHOULDECHOVA A. Fair prediction with disparate impact: a study of bias in recidivism prediction instruments[J]. Big Data, 2017, 5(2): 153-163. 10.1089/big.2016.0047 |
35 | VOIGT P, VON DEM BUSSCHE A. The EU General Data Protection Regulation (GDPR): A Practical Guide[M]. Cham: Springer, 2017: 141-187. 10.1007/978-3-319-57959-7 |
36 | ALVAREZ‑MELIS D, JAAKKOLA T. Towards robust interpretability with self‑explaining neural networks[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 7786-7795. 10.18653/v1/d17-1042 |
37 | GUIDOTTI R, MONREALE A, RUGGIERI S, et al. A survey of methods for explaining black box models[J]. ACM Computing Surveys, 2018, 51(5): No.93. 10.1145/3236009 |
38 | SATO M, TSUKIMOTO H. Rule extraction from neural networks via decision tree induction[C]// Proceedings of the 2001 International Joint Conference on Neural Networks. Piscataway: IEEE, 2001: 1870-1875. |
39 | ZILKE J R, LOZA MENCÍA E, JANSSEN F. DeepRED‑rule extraction from deep neural networks[C]// Proceedings of the 2016 International Conference on Discovery Science, LNCS 9956. Cham: Springer, 2016: 457-473. |
40 | AUGASTA M G, KATHIRVALAVAKUMAR T. Reverse engineering the neural networks for rule extraction in classification problems[J]. Neural Processing Letters, 2012, 35(2): 131-150. 10.1007/s11063-011-9207-8 |
41 | SALZBERG S L. C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993[J]. Machine Learning, 1994, 16(3): 235-240. 10.1007/bf00993309 |
42 | BOZO O. Extracting decision trees from trained neural networks[C]// Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2002:456-461. 10.1145/775047.775113 |
43 | WU M, PARBHOO S, HUGHES M C, et al. Regional tree regularization for interpretability in deep neural networks[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 6413-6421. 10.1609/aaai.v34i04.6112 |
44 | WU M, HUGHES M C, PARBHOO S, et al. Beyond sparsity: tree regularization of deep models for interpretability[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 1670-1678. 10.1609/aaai.v32i1.11501 |
45 | WANG X, WANG D X, XU C R, et al. Explainable reasoning over knowledge graphs for recommendation[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 5329-5336. 10.1609/aaai.v33i01.33015329 |
46 | YU X, REN X, GU Q Q, et al. Collaborative filtering with entity similarity regularization in heterogeneous information networks[C/OL]// Proceedings of the 2nd IJCAI Workshop on Heterogeneous Information Network Analysis. [2021-09-22].. 10.1145/2556195.2556259 |
47 | GAO L, YANG H, WU J, et al. Recommendation with multi‑ source heterogeneous information[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2018: 3378-3384. 10.24963/ijcai.2018/469 |
48 | XIAN Y K, FU Z H, MUTHUKRISHNAN S, et al. Reinforcement knowledge graph reasoning for explainable recommendation[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 285-294. 10.1145/3331184.3331203 |
49 | HE R N, McAULEY J. Ups and downs: modeling the visual evolution of fashion trends with one‑class collaborative filtering[C]// Proceedings of the 25th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2016: 507-517. 10.1145/2872427.2883037 |
50 | BORDES A, USUNIER N, GARCIAD‑DURÁN A, et al. Translating embeddings for modeling multi‑relational data[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2013: 2787-2795. |
51 | LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]// Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2015: 2181-2187. 10.1609/aaai.v29i1.9491 |
52 | AI Q Y, AZIZI V, CHEN X, et al. Learning heterogeneous knowledge base embeddings for explainable recommendation[J]. Algorithms, 2018, 11(9): No.137. 10.3390/a11090137 |
53 | REN H Y, HU W H, LESKOVEC J. Query2box: reasoning over knowledge graphs in vector space using box embeddings[EB/OL]. (2020-02-29) [2021-05-16].. |
54 | ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8689. Cham: Springer, 2014: 818-833. |
55 | KOH P W, LIANG P. Understanding black‑box predictions via influence functions[C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 1885-1894. |
56 | ZINTGRAF L M, COHEN T S, ADEL T, et al. Visualizing deep neural network decisions: prediction difference analysis[EB/OL]. (2017-02-15) [2021-05-16].. |
57 | PETSIUK V, DAS A, SAENKO K. RISE: randomized input sampling for explanation of black‑box models[C]// Proceedings of the 2018 British Machine Vision Conference. Durham: BMVA Press, 2018: No.1064. |
58 | SIMONYAN K, VEDALDI A, ZISSERMAN A. Deep inside convolutional networks: visualising image classification models and saliency maps[EB/OL]. (2014-04-19) [2021-05-06].. |
59 | SPRINGENBERG J T, DOSOVITSKIY A, BROX T, et al. Striving for simplicity: the all convolutional net[EB/OL]. (2015-04-13) [2021-06-07].. |
60 | SUNDARARAJAN M, TALY A, YAN Q Q. Gradients of counterfactuals[EB/OL]. (2016-11-15) [2021-06-11].. |
61 | SMILKOV D, THORAT N, KIM B, et al. SmoothGrad: removing noise by adding noise[EB/OL]. (2017-06-12) [2021-06-23].. |
62 | ZHOU B L, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2921-2929. 10.1109/cvpr.2016.319 |
63 | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad‑CAM: visual explanations from deep networks via gradient‑based localization[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 618-626. 10.1109/iccv.2017.74 |
64 | CHATTOPADHAY A, SARKAR A, HOWLADER P, et al. Grad‑CAM++: generalized gradient‑based visual explanations for deep convolutional networks[C]// Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2018: 839-847. 10.1109/wacv.2018.00097 |
65 | SHRIKUMAR A, GREENSIDE P, KUNDAJE A. Learning important features through propagating activation differences[C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 3145-3153. |
66 | BACH S, BINDER A, MONTAVON G, et al. On pixel‑wise explanations for non‑linear classifier decisions by layer‑wise relevance propagation[J]. PLoS ONE, 2015, 10(7): No.e0130140. 10.1371/journal.pone.0130140 |
67 | KINDERMANS P J, HOOKER S, ADEBAYO J, et al. The (un)reliability of saliency methods[M]// SAMEK W, MONTAVON G, VEDALDI A, et al. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, LNCS 11700. Cham: Springer, 2019: 267-280. |
68 | RIBEIRO M T, SINGH S, GUESTRIN C. "Why should I trust you?" explaining the predictions of any classifier[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1135-1144. 10.1145/2939672.2939778 |
69 | GUO W B, MU D L, XU J, et al. LEMNA: explaining deep learning based security applications[C]// Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2018: 364-379. 10.1145/3243734.3243792 |
70 | ZAFAR M R, KHAN N M. DLIME: a deterministic local interpretable model‑agnostic explanations approach for computer‑ aided diagnosis systems[EB/OL]. (2019-06-24) [2021-07-03].. 10.3390/make3030027 |
71 | SHI S, ZHANG X F, FAN W. A modified perturbed sampling method for local interpretable model‑agnostic explanation[EB/OL]. (2020-02-18) [2021-08-16].. 10.1201/9780429027192-11 |
72 | BRAMHALL S, HORN H, TIEU M, et al. QLIME — a quadratic local interpretable model‑agnostic explanation approach[J]. SMU Data Science Review, 2020, 3(1): No.4. |
73 | KIM B, WATTENBERG M, GILMER J, et al. Interpretability beyond feature attribution: quantitative Testing with Concept Activation Vectors (TCAV)[C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR.org, 2018: 2668-2677. |
74 | GHORBANI A, WEXLER J, ZOU J, et al. Towards automatic concept‑based explanations[C/OL]// Proceedings of the 33rd Conference on Neural Information Processing Systems. [2021-09-21].. |
75 | GOYAL Y, FEDER A, SHALIT U, et al. Explaining classifiers with Causal Concept Effect (CaCE)[EB/OL]. (2020-02-28) [2021-08-19].. |
76 | PEARL J. Causality[M]. 2nd ed. Cambridge: Cambridge University Press, 2009. |
77 | YEH C‑K, KIM B, ARIK S Ö, et al. On completeness-aware concept-based explanations in deep neural networks[C]// NeurIPS 2020: Proceedings of the 2020 Advances in Neural Information Processing Systems 33. Berlin: Springer, 2020: 20554-20565. 10.1016/j.neucom.2020.01.001 |
78 | BIEN J, TIBSHIRANI R. Prototype selection for interpretable classification[J]. The Annals of Applied Statistics, 2011, 5(4): 2403-2424. 10.1214/11-aoas495 |
79 | KIM B, KHANNA R, KOYEJO O. Examples are not enough, learn to criticize! criticism for interpretability[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2016: 2288-2296. |
80 | LI O, LIU H, CHEN C F, et al. Deep learning for case‑based reasoning through prototypes: a neural network that explains its predictions[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 3530-3537. 10.1609/aaai.v32i1.11771 |
81 | CHEN C F, LI O, TAO C F, et al. This looks like that: deep learning for interpretable image recognition[C/OL]// Proceedings of the 33rd Conference on Neural Information Processing Systems. [2021-09-21].. |
82 | RAZAVIAN A S, AZIZPOUR H, SULLIVAN J, et al. CNN features off‑the‑shelf: an astounding baseline for recognition[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2014: 512-519. 10.1109/cvprw.2014.131 |
83 | YOSINSKI J, CLUNE J, BENGIO Y, et al. How transferable are features in deep neural networks?[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 3320-3328. |
84 | ZHOU B L, KHOSLA A, LAPEDRIZA A, et al. Object detectors emerge in deep scene CNNs[EB/OL]. (2015-04-15) [2021-06-16].. |
85 | MORCOS A S, BARRETT D G T, RABINOWITZ N C, et al. On the importance of single directions for generalization[EB/OL]. (2018-05-22) [2021-05-16].. |
86 | ZHOU B L, SUN Y Y, BAU D, et al. Revisiting the importance of individual units in CNNs via ablation[EB/OL]. (2018-06-07) [2021-05-16].. |
87 | BAU D, ZHU J Y, STROBELT H, et al. Understanding the role of individual units in a deep neural network[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(48): 30071-30078. 10.1073/pnas.1907375117 |
88 | LETHAM B, RUDIN C, McCORMICK T H, et al. Interpretable classifiers using rules and Bayesian analysis: building a better stroke prediction model[J]. The Annals of Applied Statistics, 2015, 9(3): 1350-1371. 10.1214/15-aoas848 |
89 | YANG H Y, RUDIN C, SELTZER M. Scalable Bayesian rule lists[C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 3921-3930. |
90 | ZHOU Z H, FENG J. Deep forest: towards an alternative to deep neural networks[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2017: 3553-3559. 10.24963/ijcai.2017/497 |
91 | PEDAPATI T, BALAKRISHNAN A, SHANMUGAN K, et al. Learning global transparent models consistent with local contrastive explanations[C/OL]// Proceedings of the 34th Conference on Neural Information Processing Systems. [2021-09-21]. . |
92 | HASTIE T, TIBSHIRANI R J. Generalized additive models[J]. Statistical Science, 1986, 1(3):297-310. 10.1214/ss/1177013604 |
93 | CARUANA R, LOU Y, GEHRKE J, et al. Intelligible models for healthcare: predicting pneumonia risk and hospital 30‑day readmission[C]// Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2015: 1721-1730. 10.1145/2783258.2788613 |
94 | AGARWAL R, MELNICK L, FROSST N, et al. Neural additive models: interpretable machine learning with neural nets[C/OL]// Proceedings of the 35th Conference on Neural Information Processing Systems. [2022-01-21].. 10.1002/9781119791416.ch2 |
95 | ANTOL S, AGRAWAL A, LU J S, et al. VQA: visual question answering[C]// Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 2425-2433. 10.1109/iccv.2015.279 |
96 | FUKUI A, PARK D H, YANG D, et al. Multimodal compact bilinear pooling for visual question answering and visual grounding[C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2016: 457-468. 10.18653/v1/d16-1044 |
97 | HENDRICKS L A, AKATA Z, ROHRBACH M, et al. Generating visual explanations[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9908. Cham: Springer, 2016: 3-19. |
98 | DONAHUE J, HENDRICKS L A, GUADARRAMA S, et al. Long‑term recurrent convolutional networks for visual recognition and description[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 2625-2634. 10.1109/cvpr.2015.7298878 |
99 | PARK D H, HENDRICKS L A, AKATA Z, et al. Multimodal explanations: justifying decisions and pointing to the evidence[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8779-8788. 10.1109/cvpr.2018.00915 |
100 | CHEN L, YAN X, XIAO J, et al. Counterfactual samples synthesizing for robust visual question answering[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10797-10806. 10.1109/cvpr42600.2020.01081 |
101 | ODAJIMA K, HAYASHI Y, TIANXIA G, et al. Greedy rule generation from discrete data and its use in neural network rule extraction[J]. Neural Networks, 2008, 21(7): 1020-1028. 10.1016/j.neunet.2008.01.003 |
102 | ZHANG Q, YANG Y, MA H, et al. Interpreting CNNs via decision trees[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 6261-6270. 10.1109/cvpr.2019.00642 |
103 | LEI X, FAN Y K, LI K C, et al. High‑precision linearized interpretation for fully connected neural network[J]. Applied Soft Computing, 2021, 109: No.107572. 10.1016/j.asoc.2021.107572 |
104 | HOOKER S, ERHAN D, KINDERMANS P J, et al. A benchmark for interpretability methods in deep neural networks[C/OL]// Proceedings of the 33rd Conference on Neural Information Processing Systems. [2021-09-21].. |
105 | YANG M J, KIM B. Benchmarking attribution methods with relative feature importance[EB/OL]. (2019-11-04) [2021-05-01].. |
106 | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8693. Cham: Springer, 2014: 740-755. |
107 | ZHOU B L, LAPEDRIZA A, KHOSLA A, et al. Places: a 10 million image database for scene recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(6): 1452-1464. 10.1109/tpami.2017.2723009 |
108 | ALVAREZ‑MELIS D, JAAKKOLA T S. Towards robust interpretability with self‑explaining neural networks[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 7786-7795. 10.18653/v1/d17-1042 |
109 | MOHSENI S, BLOCK J E, RAGAN E D. A human‑grounded evaluation benchmark for local explanations of machine learning[EB/OL]. (2020-06-28)[2021-05-16].. 10.1145/3397481.3450689 |
110 | HOLZINGER A, CARRINGTON A, MÜLLER H. Measuring the quality of explanations: the System Causability Scale (SCS)[J]. KI - Künstliche Intelligenz, 2020, 34(2): 193-198. 10.1007/s13218-020-00636-z |
111 | EDMONDS M, GAO F, LIU H X, et al. A tale of two explanations: enhancing human trust by explaining robot behavior[J]. Science Robotics, 2019, 4(37): No.aay4663. 10.1126/scirobotics.aay4663 |
[1] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[2] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[3] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[4] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[5] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[6] | Ying YANG, Xiaoyan HAO, Dan YU, Yao MA, Yongle CHEN. Graph data generation approach for graph neural network model extraction attacks [J]. Journal of Computer Applications, 2024, 44(8): 2483-2492. |
[7] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[8] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[9] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[10] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
[11] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[12] | Zhi ZHANG, Xin LI, Naifu YE, Kaixi HU. DKP: defending against model stealing attacks based on dark knowledge protection [J]. Journal of Computer Applications, 2024, 44(7): 2080-2086. |
[13] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. |
[14] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[15] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||