1 |
CHEN M S, HAN J W, YU P S. Data mining: an overview from a database perspective[J]. IEEE Transactions on Knowledge and Data Engineering, 1996, 8(6): 866-883. 10.1109/69.553155
|
2 |
HAN J W, PEI J, YIN Y W, et al. Mining frequent patterns without candidate generation: a frequent-pattern tree approach[J]. Data Mining and Knowledge Discovery, 2004, 8(1): 53-87. 10.1023/b:dami.0000005258.31418.83
|
3 |
TELIKANI A, GANDOMI A H, SHAHBAHRAMI A. A survey of evolutionary computation for association rule mining[J]. Information Sciences, 2020, 524: 318-352. 10.1016/j.ins.2020.02.073
|
4 |
QIN J W, WANG J Y, LI Q Y, et al. Differentially private frequent episode mining over event streams[J]. Engineering Applications of Artificial Intelligence, 2022, 110: No.104681. 10.1016/j.engappai.2022.104681
|
5 |
WU Y X, ZHU C R, LI Y, et al. NetNCSP: nonoverlapping closed sequential pattern mining[J]. Knowledge-Based Systems, 2020, 196: No.105812. 10.1016/j.knosys.2020.105812
|
6 |
SRIVASTAVA G, LIN J C W, PIROUZ M, et al. A pre-large weighted-fusion system of sensed high-utility patterns[J]. IEEE Sensors Journal, 2021, 21(14): 15626-15634. 10.1109/jsen.2020.2991045
|
7 |
SONG W, HUANG C M. Mining high average-utility itemsets based on particle swarm optimization[J]. Data Science and Pattern Recognition, 2020, 4(2): 19-32.
|
8 |
YAO H, HAMILTON H J, GENG L Q. A unified framework for utility-based measures for mining itemsets[C]// Proceedings of the 2nd Workshop on Utility-Based Data Mining Held in Conjunction with the KDD Conference. New York: ACM, 2006:28-37.
|
9 |
GENG L Q, HAMILTON H J. Interestingness measures for data mining: a survey[J]. ACM Computing Surveys, 2006, 38(3): No.9-es. 10.1145/1132960.1132963
|
10 |
TAN P N, KUMAR V, SRIVASTAVA J. Selecting the right objective measure for association analysis[J]. Information Systems, 2004, 29(4): 293-313. 10.1016/S0306-4379(03)00072-3
|
11 |
McGARRY K. A survey of interestingness measures for knowledge discovery[J]. The Knowledge Engineering Review, 2005, 20(1): 39-61. 10.1017/s0269888905000408
|
12 |
HILDERMAN R J, HAMILTON H J. Measuring the interestingness of discovered knowledge: a principled approach[J]. Intelligent Data Analysis, 2003, 7(4): 347-382. 10.3233/ida-2003-7406
|
13 |
SILBERSCHATZ A, TUZHILIN A. On subjective measures of interestingness in knowledge discovery[C]// Proceedings of the First International Conference on Knowledge Discovery and Data Mining. Menlo Park, CA: AAAI Press, 1995:275-281.
|
14 |
DE BIE T. Maximum entropy models and subjective interestingness: an application to tiles in binary databases[J]. Data Mining and Knowledge Discovery, 2011, 23(3): 407-446. 10.1007/s10618-010-0209-3
|
15 |
YAO H, HAMILTON H J. Mining itemset utilities from transaction databases[J]. Data and Knowledge Engineering, 2006, 59(3): 603-626. 10.1016/j.datak.2005.10.004
|
16 |
冯登国,张敏,李昊. 大数据安全与隐私保护[J]. 计算机学报, 2014, 37(1): 246-258.
|
|
FENG D G, ZHANG M, LI H. Big data security and privacy protection[J]. Chinese Journal of Computers, 2014, 37(1): 246-258.
|
17 |
BERTINO E, LIN D, JIANG W. A survey of quantification of privacy preserving data mining algorithms[M]// AGGARWAL C C, YU P S. Privacy-Preserving Data Mining: Models and Algorithms. Boston: Springer, 2008: 183-205. 10.1007/978-0-387-70992-5_8
|
18 |
张啸剑,孟小峰. 面向数据发布和分析的差分隐私保护[J]. 计算机学报, 2014, 37(4): 927-949. 10.3724/SP.J.1016.2014.00927
|
|
ZHANG X J, MENG X F. Differential privacy in data publication and analysis[J]. Chinese Journal of Computers, 2014, 37(4): 927-949. 10.3724/SP.J.1016.2014.00927
|
19 |
SLIJEPČEVIĆ D, HENZL M, DANIEL KLAUSNER L, et al. k-Anonymity in practice: how generalisation and suppression affect machine learning classifiers[J]. Computers and Security, 2021, 111: No.102488. 10.1016/j.cose.2021.102488
|
20 |
LIU J, TIAN Y, ZHOU Y, et al. Privacy preserving distributed data mining based on secure multi-party computation[J]. Computer Communications, 2020, 153: 208-216. 10.1016/j.comcom.2020.02.014
|
21 |
YEH J S, HSU P C. HHUIF and MSICF: novel algorithms for privacy preserving utility mining[J]. Expert Systems with Applications, 2010, 37(7): 4779-4786. 10.1016/j.eswa.2009.12.038
|
22 |
LIN J C W, GAN W S, FOURNIER-VIGER P, et al. Fast algorithms for mining high-utility itemsets with various discount strategies[J]. Advanced Engineering Informatics, 2016, 30(2): 109-126. 10.1016/j.aei.2016.02.003
|
23 |
YUN U, KIM J. A fast perturbation algorithm using tree structure for privacy preserving utility mining[J]. Expert Systems with Applications, 2015, 42(3): 1149-1165. 10.1016/j.eswa.2014.08.037
|
24 |
LIU X, CHEN G L, WEN S T, et al. An improved sanitization algorithm in privacy-preserving utility mining[J]. Mathematical Problems in Engineering, 2020, 2020: No.7489045. 10.1155/2020/7489045
|
25 |
LIU X, WEN S T, ZUO W L. Effective sanitization approaches to protect sensitive knowledge in high-utility itemset mining[J]. Applied Intelligence, 2020, 50(1): 169-191. 10.1007/s10489-019-01524-2
|
26 |
JANGRA S, TOSHNIWAL D. Efficient algorithms for victim item selection in privacy-preserving utility mining[J]. Future Generation Computer Systems, 2022, 128: 219-234. 10.1016/j.future.2021.10.008
|
27 |
SHEN Y D, ZHANG Z, YANG Q. Objective-oriented utility-based association mining[C]// Proceedings of the 2002 IEEE International Conference on Data Mining. Piscataway: IEEE, 2002:426-433. 10.1109/icdm.2002.1183878
|
28 |
HU J Y, MOJSILOVIC A. High-utility pattern mining: a method for discovery of high-utility item sets[J]. Pattern Recognition, 2007, 40(11): 3317-3324. 10.1016/j.patcog.2007.02.003
|
29 |
AHMED C F, TANBEER S K, JEONG B S, et al. Efficient tree structures for high utility pattern mining in incremental databases[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(12): 1708-1721. 10.1109/tkde.2009.46
|
30 |
WU J M T, LIN J C W, TAMRAKAR A. High-utility itemset mining with effective pruning strategies[J]. ACM Transactions on Knowledge Discovery from Data, 2019, 13(6): No.58. 10.1145/3363571
|
31 |
KRISHNAMOORTHY S. Pruning strategies for mining high utility itemsets[J]. Expert Systems with Applications, 2015, 42(5): 2371-2381. 10.1016/j.eswa.2014.11.001
|
32 |
ZIDA S, FOURNIER-VIGER P, LIN J C W, et al. EFIM: a highly efficient algorithm for high-utility itemset mining[C]// Proceedings of the 2015 Mexican International Conference on Artificial Intelligence, LNCS 9413. Cham: Springer, 2015:530-546.
|
33 |
GAN W S, LIN J C W, FOURNIER-VIGER P, et al. HUOPM: high-utility occupancy pattern mining[J]. IEEE Transactions on Cybernetics, 2020, 50(3): 1195-1208. 10.1109/tcyb.2019.2896267
|
34 |
WU J M T, SRIVASTAVA G, WEI M, et al. Fuzzy high-utility pattern mining in parallel and distributed Hadoop framework[J]. Information Sciences, 2021, 553: 31-48. 10.1016/j.ins.2020.12.004
|
35 |
LI S X, MU N K, LE J Q, et al. A novel algorithm for privacy preserving utility mining based on integer linear programming[J]. Engineering Applications of Artificial Intelligence, 2019, 81: 300-312. 10.1016/j.engappai.2018.12.006
|
36 |
DINH T, QUANG M N, LE B. A novel approach for hiding high utility sequential patterns[C]// Proceedings of Proceedings of the 6th International Symposium on Information and Communication Technology. New York: ACM, 2015:121-128. 10.1145/2833258.2833271
|
37 |
QUANG M N, HUYNH U, DINH T, et al. An approach to decrease execution time and difference for hiding high utility sequential patterns[C]// Proceedings of the 2016 International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making, LNCS 9978. Cham: Springer, 2016:435-446.
|
38 |
LE B, DINH D T, HUYNH V N, et al. An efficient algorithm for Hiding High Utility Sequential Patterns[J]. International Journal of Approximate Reasoning, 2018, 95: 77-92. 10.1016/j.ijar.2018.01.005
|
39 |
ARYABARZAN N, MINAEI-BIDGOLI B, TESHNEHLAB M. negFIN: an efficient algorithm for fast mining frequent itemsets[J]. Expert Systems with Applications, 2018, 105: 129-143. 10.1016/j.eswa.2018.03.041
|
40 |
LIN J C W, WU T Y, FOURNIER-VIGER P, et al. Fast algorithms for hiding sensitive high-utility itemsets in privacy-preserving utility mining[J]. Engineering Applications of Artificial Intelligence, 2016, 55: 269-284. 10.1016/j.engappai.2016.07.003
|
41 |
DUONG Q H, FOURNIER-VIGER P, RAMAMPIARO H, et al. Efficient high utility itemset mining using buffered utility-lists[J]. Applied Intelligence, 2018, 48(7): 1859-1877. 10.1007/s10489-017-1057-2
|
42 |
GE Z Q, SONG Z H, DING S X, et al. Data mining and analytics in the process industry: the role of machine learning[J]. IEEE Access, 2017, 5: 20590-20616. 10.1109/access.2017.2756872
|
43 |
TASSA T. Secure mining of association rules in horizontally distributed databases[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(4): 970-983. 10.1109/tkde.2013.41
|
44 |
LIN J C W, LIU Q K, FOURNIER-VIGER P, et al. A sanitization approach for hiding sensitive itemsets based on particle swarm optimization[J]. Engineering Applications of Artificial Intelligence, 2016, 53: 1-18. 10.1016/j.engappai.2016.03.007
|