[1] WANG Z, LIU D, YANG J, et al. Deep networks for image super-resolution with sparse prior[C]//ICCV 2015:Proceedings of the 2015 IEEE International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2016:370-378. [2] LUO Y, XU Y, JI H. Removing rain from a single image via discriminative sparse coding[C]//ICCV 2015:Proceedings of the 2015 IEEE International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2015:3397-3405. [3] WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2):210-227. [4] LIU Q, LIU C. A novel locally linear KNN model for visual recognition[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2015:1329-1337. [5] AHARON M, ELAD M, BRUCKSTEIN A. K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11):4311-4322. [6] ZHANG Q, LI B. Discriminative K-SVD for dictionary learning in face recognition[C]//Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2010:2691-2698. [7] JIANG Z, LIN Z, DAVIS L S. Label consistent K-SVD:learning a discriminative dictionary for recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11):2651-2664. [8] LI Z, LAI Z, XU Y, et al. A locality-constrained and label embedding dictionary learning algorithm for image classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(2):278-293. [9] YANG M, ZANG L, FENG X, et al. Sparse representation based Fisher discrimination dictionary learning for image classification[J]. International Journal of Computer Vision, 2014, 109(3):209-232. [10] CAI S, ZUO W, ZHANG L, et al. Support vector guided dictionary learning[C]//ECCV 2014:Proceedings of the 13th European Conference on Computer Vision, LNCS 8692. Berlin:Springer, 2014:624-639. [11] RIGAMONTI R, BRWON M A, LEPTIT V. Are sparse representations really relevant for image classification?[C]//Proceedings of the CVPR 2011. Washington, DC:IEEE Computer Society, 2011:1545-1552. [12] ZHANG L, YANG M, FENG X. Sparse representation or collaborative representation:Which helps face recognition?[C]//Proceedings of the 2011 International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2011:471-478. [13] MEHTA N A, GRAY A G. Sparsity-based generalization bounds for predictive sparse coding[EB/OL].[2018-05-10]. http://www.jmlr.org/proceedings/papers/v28/mehta13.pdf. [14] CAI S, ZHANG L, ZUO W, et al. A probabilistic collaborative representation based approach for pattern classification[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2016:2950-2959. [15] PLATT J C. 12 Fast training of support vector machines using sequential minimal optimization[M]//SOENTPIET R. Advances in Kernel Methods:Support Vector Learning. Cambridge, MA:MIT Press, 1999:185-208. [16] MAIRAL J, BACH F, PONCE J. Task-driven dictionary learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4):791-804. [17] RAMIREZ I, SPRECHMANN P, SAPIRO G. Classification and clustering via dictionary learning with structured incoherence and shared features[C]//Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2010:3501-3508. [18] GAO S, TSANG W H, MA Y. Learning category-specific dictionary and shared dictionary for fine-grained image categorization[J]. IEEE Transactions on Image Processing, 2013, 23(2):623-634. [19] ZHOU N. Learning inter-related visual dictionary for object recognition[J]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2012:3490-3497. [20] KONG S, WANG D. A dictionary learning approach for classification:separating the particularity and the commonality[C]//ECCV 2012:Proceedings of the 12th European Conference on Computer Vision, LNCS 7572. Berlin:Springer, 2012:186-199. [21] VAPNIK V, CHAPPLE O. Bounds on error expectation for support vector machines[J]. Neural Computation, 2000, 12(9):2013-2036. [22] LIAN X C, LI Z, LU B L, et al. Max-margin dictionary learning for multiclass image categorization[C]//ECCV 2010:Proceedings of the 11th European Conference on Computer Vision, LNCS 6314. Berlin:Springer, 2010:157-170. [23] SCHOLKOPF B, PLATT J, HOFMANN T. Efficient sparse coding algorithms[EB/OL].[2018-05-10]. http://papers.nips.cc/paper/2979-efficient-sparse-coding-algorithms.pdf. [24] LEE K C, HO J, KRIEGMAN D J. Acquiring linear subspaces for face recognition under variable lighting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5):684-698. [25] MARTINEZA M, BENAVENTE R. The AR face database, TR #24[R]. Barcelona, Spain:Computer Vision Center, 1998. [26] LI F F, FERGUS R, PERONA P. Learning generative visual models from few training examples:an incremental Bayesian approach tested on 101 object categories[C]//Proceedings of the 2004 Conference on Computer Vision and Pattern Recognition Workshop. Washington, DC:IEEE Computer Society, 2004:178. [27] XU Y, ZHANG Z, LU G, et al. Approximately symmetrical face images for image preprocessing in face recognition and sparse representation based classification[J]. Pattern Recognition, 2016, 54:68-82. [28] WANG D, KONG S. A classification-oriented dictionary learning model:explicitly learning the particularity and commonality across categories[J]. Pattern Recognition, 2014, 47(2):885-898. [29] ZHANG Z, XU Y, SHAO L, et al. Discriminative block-diagonal representation learning for image recognition[J]. IEEE Transactions on Neural Networks & Learning Systems, 2017, 29(7):3111-3125. |