Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (2): 407-412.DOI: 10.11772/j.issn.1001-9081.2021122126
Special Issue: 数据科学与技术
• Data science and technology • Previous Articles Next Articles
Zhifeng MA1,2, Junyang YU1,2, Longge WANG1,2()
Received:
2021-12-21
Revised:
2022-07-04
Accepted:
2022-07-15
Online:
2022-09-23
Published:
2023-02-10
Contact:
Longge WANG
About author:
MA Zhifeng, born in 1998, M. S. candidate. His research interests include image processing, deep learning.Supported by:
通讯作者:
王龙葛
作者简介:
马志峰(1998—),男,河南濮阳人,硕士研究生,主要研究方向:图像处理、深度学习基金资助:
CLC Number:
Zhifeng MA, Junyang YU, Longge WANG. Diversity represented deep subspace clustering algorithm[J]. Journal of Computer Applications, 2023, 43(2): 407-412.
马志峰, 于俊洋, 王龙葛. 多样性表示的深度子空间聚类算法[J]. 《计算机应用》唯一官方网站, 2023, 43(2): 407-412.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021122126
自编码层 | Extended Yale B | ORL | COIL20 | Umist | ||||
---|---|---|---|---|---|---|---|---|
卷积核 | 通道 数 | 卷积核 | 通道数 | 卷积核 | 通道数 | 卷积核 | 通道数 | |
编码层1 | 5×5 | 10 | 3×3 | 3 | 3×3 | 15 | 3×3 | 20 |
编码层2 | 3×3 | 20 | 3×3 | 3 | 3×3 | 10 | 3×3 | 10 |
编码层3 | 3×3 | 30 | 3×3 | 5 | — | — | 3×3 | 5 |
解码层3 | 3×3 | 30 | 3×3 | 5 | — | — | 3×3 | 5 |
解码层2 | 3×3 | 20 | 3×3 | 3 | 3×3 | 10 | 3×3 | 10 |
解码层1 | 5×5 | 10 | 3×3 | 3 | 3×3 | 15 | 3×3 | 20 |
Tab. 1 Network structure parameters of different datasets
自编码层 | Extended Yale B | ORL | COIL20 | Umist | ||||
---|---|---|---|---|---|---|---|---|
卷积核 | 通道 数 | 卷积核 | 通道数 | 卷积核 | 通道数 | 卷积核 | 通道数 | |
编码层1 | 5×5 | 10 | 3×3 | 3 | 3×3 | 15 | 3×3 | 20 |
编码层2 | 3×3 | 20 | 3×3 | 3 | 3×3 | 10 | 3×3 | 10 |
编码层3 | 3×3 | 30 | 3×3 | 5 | — | — | 3×3 | 5 |
解码层3 | 3×3 | 30 | 3×3 | 5 | — | — | 3×3 | 5 |
解码层2 | 3×3 | 20 | 3×3 | 3 | 3×3 | 10 | 3×3 | 10 |
解码层1 | 5×5 | 10 | 3×3 | 3 | 3×3 | 15 | 3×3 | 20 |
聚类数目 | 衡量维度 | 算法 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
LRR | SSC | KSSC | EDSC | AE+EDSC | DSC | S2ConvSCN | MLRDSC | DRDSC | ||
10 | 平均数 | 22.22 | 10.22 | 14.49 | 5.64 | 5.46 | 1.59 | 1.18 | 1.10 | 1.11 |
中位数 | 23.49 | 11.09 | 15.78 | 5.47 | 6.09 | 1.25 | 1.09 | 0.94 | 1.10 | |
15 | 平均数 | 23.22 | 13.13 | 16.22 | 7.63 | 6.70 | 1.67 | 1.12 | 0.91 | 0.98 |
中位数 | 23.49 | 13.40 | 17.34 | 6.41 | 5.52 | 1.72 | 1.14 | 0.99 | 0.94 | |
20 | 平均数 | 30.23 | 19.75 | 16.55 | 9.30 | 7.67 | 1.73 | 1.30 | 0.99 | 0.98 |
中位数 | 29.30 | 21.17 | 17.34 | 10.31 | 6.56 | 1.80 | 1.25 | 1.02 | 0.94 | |
25 | 平均数 | 27.92 | 26.22 | 18.56 | 10.67 | 10.27 | 1.75 | 1.29 | 1.13 | 1.00 |
中位数 | 28.13 | 26.66 | 18.03 | 10.84 | 10.22 | 1.81 | 1.28 | 1.12 | 1.03 | |
30 | 平均数 | 37.98 | 28.76 | 20.49 | 11.24 | 11.56 | 2.07 | 1.67 | 1.78 | 1.13 |
中位数 | 36.82 | 28.59 | 20.94 | 11.09 | 10.36 | 2.19 | 1.72 | 1.41 | 1.09 | |
35 | 平均数 | 41.85 | 28.55 | 26.07 | 13.10 | 13.28 | 2.65 | 1.62 | 1.44 | 1.42 |
中位数 | 41.81 | 29.04 | 25.92 | 13.10 | 13.21 | 2.64 | 1.60 | 1.47 | 1.43 | |
38 | 平均数 | 34.87 | 27.51 | 27.75 | 11.64 | 12.66 | 2.67 | 1.52 | 1.36 | 1.23 |
中位数 | 34.87 | 27.51 | 27.75 | 11.64 | 12.66 | 2.67 | 1.52 | 1.36 | 1.23 |
Tab. 2 Clustering error rate result comparison on Extended Yale B dataset
聚类数目 | 衡量维度 | 算法 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
LRR | SSC | KSSC | EDSC | AE+EDSC | DSC | S2ConvSCN | MLRDSC | DRDSC | ||
10 | 平均数 | 22.22 | 10.22 | 14.49 | 5.64 | 5.46 | 1.59 | 1.18 | 1.10 | 1.11 |
中位数 | 23.49 | 11.09 | 15.78 | 5.47 | 6.09 | 1.25 | 1.09 | 0.94 | 1.10 | |
15 | 平均数 | 23.22 | 13.13 | 16.22 | 7.63 | 6.70 | 1.67 | 1.12 | 0.91 | 0.98 |
中位数 | 23.49 | 13.40 | 17.34 | 6.41 | 5.52 | 1.72 | 1.14 | 0.99 | 0.94 | |
20 | 平均数 | 30.23 | 19.75 | 16.55 | 9.30 | 7.67 | 1.73 | 1.30 | 0.99 | 0.98 |
中位数 | 29.30 | 21.17 | 17.34 | 10.31 | 6.56 | 1.80 | 1.25 | 1.02 | 0.94 | |
25 | 平均数 | 27.92 | 26.22 | 18.56 | 10.67 | 10.27 | 1.75 | 1.29 | 1.13 | 1.00 |
中位数 | 28.13 | 26.66 | 18.03 | 10.84 | 10.22 | 1.81 | 1.28 | 1.12 | 1.03 | |
30 | 平均数 | 37.98 | 28.76 | 20.49 | 11.24 | 11.56 | 2.07 | 1.67 | 1.78 | 1.13 |
中位数 | 36.82 | 28.59 | 20.94 | 11.09 | 10.36 | 2.19 | 1.72 | 1.41 | 1.09 | |
35 | 平均数 | 41.85 | 28.55 | 26.07 | 13.10 | 13.28 | 2.65 | 1.62 | 1.44 | 1.42 |
中位数 | 41.81 | 29.04 | 25.92 | 13.10 | 13.21 | 2.64 | 1.60 | 1.47 | 1.43 | |
38 | 平均数 | 34.87 | 27.51 | 27.75 | 11.64 | 12.66 | 2.67 | 1.52 | 1.36 | 1.23 |
中位数 | 34.87 | 27.51 | 27.75 | 11.64 | 12.66 | 2.67 | 1.52 | 1.36 | 1.23 |
数据集 | 算法 | |||||||
---|---|---|---|---|---|---|---|---|
LRR | SSC | KSSC | EDSC | DSC | S2ConvSCN | MLRDSC | DRDSC | |
ORL | 33.50 | 29.50 | 34.25 | 27.25 | 14.00 | 10.50 | 11.25 | 10.50 |
COIL20 | 30.21 | 14.83 | 24.65 | 14.86 | 5.42 | 2.14 | 2.08 | 1.74 |
Umist | 30.21 | 30.96 | 34.69 | 30.63 | 26.88 | — | — | 17.71 |
Tab. 3 Clustering error rate result comparison on ORL, COIL20 and Umist datasets
数据集 | 算法 | |||||||
---|---|---|---|---|---|---|---|---|
LRR | SSC | KSSC | EDSC | DSC | S2ConvSCN | MLRDSC | DRDSC | |
ORL | 33.50 | 29.50 | 34.25 | 27.25 | 14.00 | 10.50 | 11.25 | 10.50 |
COIL20 | 30.21 | 14.83 | 24.65 | 14.86 | 5.42 | 2.14 | 2.08 | 1.74 |
Umist | 30.21 | 30.96 | 34.69 | 30.63 | 26.88 | — | — | 17.71 |
1 | ZHANG Y X, BAI X Z, FAN R R, et al. Deviation-sparse fuzzy C-means with neighbor information constraint[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(1): 185-199. 10.1109/tfuzz.2018.2883033 |
2 | TANG Y M, REN F J, PEDRYCZ W. Fuzzy C-Means clustering through SSIM and patch for image segmentation[J]. Applied Soft Computing, 2020, 87: No.105928. 10.1016/j.asoc.2019.105928 |
3 | BEZDEK J C, EHRLICH R, FULL W. FCM: The fuzzy c-means clustering algorithm[J]. Computers and Geosciences, 1984, 10(2/3): 191-203. 10.1016/0098-3004(84)90020-7 |
4 | RAO S, TRON R, VIDAL R, et al. Motion segmentation in the presence of outlying, incomplete, or corrupted trajectories[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(10): 1832-1845. 10.1109/tpami.2009.191 |
5 | MA Y, DERKSEN H, HONG W, et al. Segmentation of multivariate mixed data via lossy data coding and compression[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(9): 1546-1562. 10.1109/tpami.2007.1085 |
6 | ZHANG C Q, FU H Z, LIU S, et al. Low-rank tensor constrained multiview subspace clustering[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1582-1590. 10.1109/iccv.2015.185 |
7 | YANG X, DENG C, ZHENG F, et al. Deep spectral clustering using dual autoencoder network[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 4061-4070. 10.1109/cvpr.2019.00419 |
8 | NTOUTSI E, STEFANIDIS K, RAUSCH K, et al. "Strength lies in differences": diversifying friends for recommendations through subspace clustering[C]// Proceedings of the 23rd ACM International Conference on Information and Knowledge Management. New York: ACM, 2014: 729-738. 10.1145/2661829.2662026 |
9 | ZHANG A, FAWAZ N, IOANNIDIS S, et al. Guess who rated this movie: identifying users through subspace clustering[C]// Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence. Arlington, VA: AUAI Press, 2012: 944-953. |
10 | SHI J B, MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905. 10.1109/34.868688 |
11 | CHEN H Z, WANG W W, FENG X C. Structured sparse subspace clustering with within-cluster grouping[J]. Pattern Recognition, 2018, 83: 107-118. 10.1016/j.patcog.2018.05.020 |
12 | ELHAMIFAR E, VIDAL R. Sparse subspace clustering: algorithm, theory, and applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2765-2781. 10.1109/tpami.2013.57 |
13 | CHEN H Z, WANG W W, FENG X C, et al. Discriminative and coherent subspace clustering[J]. Neurocomputing, 2018, 284: 177-186. 10.1016/j.neucom.2018.01.006 |
14 | LIU G C, LIN Z C, YAN S C, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184. 10.1109/tpami.2012.88 |
15 | JI P, ZHANG T, LI H D, et al. Deep subspace clustering networks[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 23-32. |
16 | ZHOU P, HOU Y Q, FENG J S. Deep adversarial subspace clustering[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1596-1604. 10.1109/cvpr.2018.00172 |
17 | ZHANG T, JI P, HARANDI M, et al. Neural collaborative subspace clustering[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 7384-7393. |
18 | ZHANG J J, LI C G, YOU C, et al. Self-supervised convolutional subspace clustering network[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5468-5477. 10.1109/cvpr.2019.00562 |
19 | KHEIRANDISHFARD M, ZOHRIZADEH F, KAMANGAR F. Multi-level representation learning for deep subspace clustering[C]// Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2020: 2028-2037. 10.1109/wacv45572.2020.9093277 |
20 | CAO X C, ZHANG C Q, FU H Z, et al. Diversity-induced multi-view subspace clustering[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 586-594. 10.1109/cvpr.2015.7298657 |
21 | WANG Q Q, CHENG J F, GAO Q X, et al. Deep multi-view subspace clustering with unified and discriminative learning[J]. IEEE Transactions on Multimedia, 2021, 23: 3483-3493. 10.1109/tmm.2020.3025666 |
22 | GRETTON A, BELITSKI A, MURAYAMA Y, et al. The effect of artifacts on dependence measurement in fMRI[J]. Magnetic Resonance Imaging, 2006, 24(4): 401-409. 10.1016/j.mri.2005.12.036 |
23 | LAUER F, SCHNÖRR C. Spectral clustering of linear subspaces for motion segmentation[C]// Proceedings of the IEEE 12th International Conference on Computer Vision. Piscataway: IEEE, 2009: 678-685. 10.1109/iccv.2009.5459173 |
24 | ZHANG C Q, FU H Z, LIU S, et al. Low-rank tensor constrained multiview subspace clustering[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1582-1590. 10.1109/iccv.2015.185 |
25 | LUO S R, ZHANG C Q, ZHANG W, et al. Consistent and specific multi-view subspace clustering[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 3730-3737. 10.1609/aaai.v32i1.11617 |
26 | PATEL V M, VIDAL R. Kernel sparse subspace clustering[C]// Proceedings of the 2014 IEEE International Conference on Image Processing. Piscataway: IEEE, 2014: 2849-2853. 10.1109/icip.2014.7025576 |
27 | JI P, SALZMANN M, LI H D. Efficient dense subspace clustering[C]// Proceedings of the 2014 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2014: 461-468. 10.1109/wacv.2014.6836065 |
[1] | Kaili DENG, Weibo WEI, Zhenkuan PAN. Industrial defect detection method with improved masked autoencoder [J]. Journal of Computer Applications, 2024, 44(8): 2595-2603. |
[2] | Qing WANG, Jieyu ZHAO, Xulun YE, Nongxiao WANG. Enhanced deep subspace clustering method with unified framework [J]. Journal of Computer Applications, 2024, 44(7): 1995-2003. |
[3] | Zongyu LI, Siwei QIANG, Xiaobo GUO, Zhenfeng ZHU. Re-weighted adversarial variational autoencoder and its application in industrial causal effect estimation [J]. Journal of Computer Applications, 2024, 44(4): 1099-1106. |
[4] | Yu DING, Hanlin ZHANG, Rong LUO, Hua MENG. Fuzzy clustering algorithm based on belief subcluster cutting [J]. Journal of Computer Applications, 2024, 44(4): 1128-1138. |
[5] | Zhuo ZHANG, Huazhu CHEN. Deep subspace clustering based on multiscale self-representation learning with consistency and diversity [J]. Journal of Computer Applications, 2024, 44(2): 353-359. |
[6] | Jingxin LIU, Wenjing HUANG, Liangsheng XU, Chong HUANG, Jiansheng WU. Unsupervised feature selection model with dictionary learning and sample correlation preservation [J]. Journal of Computer Applications, 2024, 44(12): 3766-3775. |
[7] | Hui JIANG, Qiuyan YAN, Zhujun JIANG. Symmetric positive definite autoencoder method for multivariate time series anomaly detection [J]. Journal of Computer Applications, 2024, 44(10): 3294-3299. |
[8] | Tian HE, Zongxin SHEN, Qianqian HUANG, Yanyong HUANG. Adaptive learning-based multi-view unsupervised feature selection method [J]. Journal of Computer Applications, 2023, 43(9): 2657-2664. |
[9] | Jianwen GAN, Yan CHEN, Peng ZHOU, Liang DU. Clustering ensemble algorithm with high-order consistency learning [J]. Journal of Computer Applications, 2023, 43(9): 2665-2672. |
[10] | Chunyong YIN, Liwen ZHOU. Unsupervised time series anomaly detection model based on re-encoding [J]. Journal of Computer Applications, 2023, 43(3): 804-811. |
[11] | Shaokang XU, Zhancheng ZHANG, Haonan YAO, Zhiwei ZOU, Baocheng ZHANG. 2D/3D spine medical image real-time registration method based on pose encoder [J]. Journal of Computer Applications, 2023, 43(2): 589-594. |
[12] | Qing JIA, Laihua WANG, Weisheng WANG. Anomaly detection in video via independently recurrent neural network and variational autoencoder network [J]. Journal of Computer Applications, 2023, 43(2): 507-513. |
[13] | Qize REN, Hongjie JIA, Dongyu CHEN. Large-scale subspace clustering algorithm with Local structure learning [J]. Journal of Computer Applications, 2023, 43(12): 3747-3754. |
[14] | Anqin ZHANG, Xiaohui WANG. Power battery safety warning based on time series anomaly detection [J]. Journal of Computer Applications, 2023, 43(12): 3799-3805. |
[15] | Wenbo LI, Bo LIU, Lingling TAO, Fen LUO, Hang ZHANG. Deep spectral clustering algorithm with L1 regularization [J]. Journal of Computer Applications, 2023, 43(12): 3662-3667. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||