Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (11): 3580-3587.DOI: 10.11772/j.issn.1001-9081.2021122164
Special Issue: 第二十一届中国虚拟现实大会
• ChinaVR 2021 • Previous Articles Next Articles
Haiyan SUN, Yunbo CHEN, Dingwei FENG, Tong WANG, Xingquan CAI()
Received:
2021-12-24
Revised:
2022-03-14
Accepted:
2022-03-17
Online:
2022-05-17
Published:
2022-11-10
Contact:
Xingquan CAI
About author:
SUN Haiyan, born in 1980, Ph. D., lecturer. Her research interests include virtual reality, deep learning.Supported by:
通讯作者:
蔡兴泉
作者简介:
孙海燕(1980—),女,山东济宁人,讲师,博士,主要研究方向:虚拟现实、深度学习基金资助:
CLC Number:
Haiyan SUN, Yunbo CHEN, Dingwei FENG, Tong WANG, Xingquan CAI. Forest pest detection method based on attention model and lightweight YOLOv4[J]. Journal of Computer Applications, 2022, 42(11): 3580-3587.
孙海燕, 陈云博, 封丁惟, 王通, 蔡兴泉. 基于注意力模型和轻量化YOLOv4的林业害虫检测方法[J]. 《计算机应用》唯一官方网站, 2022, 42(11): 3580-3587.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021122164
害虫种类 | 样本数量 | 害虫种类 | 样本数量 |
---|---|---|---|
Boerner | 2 232 | armandi | 2 346 |
Leconte | 2 450 | coleoptera | 2 091 |
Linnaeus | 1 860 | linnaeus | 1 967 |
acuminatus | 1 604 |
Tab. 1 Number statistics of samples of different species of pests
害虫种类 | 样本数量 | 害虫种类 | 样本数量 |
---|---|---|---|
Boerner | 2 232 | armandi | 2 346 |
Leconte | 2 450 | coleoptera | 2 091 |
Linnaeus | 1 860 | linnaeus | 1 967 |
acuminatus | 1 604 |
模型 | AP/% | mAP/% | 帧率/FPS | ||||||
---|---|---|---|---|---|---|---|---|---|
Boerner | Leconte | Linnaeus | acuminatus | armandi | coleoptera | linnaeus | |||
YOLOv4 | 95.9 | 94.8 | 85.6 | 70.5 | 89.2 | 81.9 | 91.5 | 87.0 | 25 |
本文模型 | 99.7 | 98.6 | 90.1 | 84.0 | 95.0 | 91.1 | 97.5 | 93.7 | 56 |
Tab. 2 Comparison of objective data of proposed model and original YOLOv4 model
模型 | AP/% | mAP/% | 帧率/FPS | ||||||
---|---|---|---|---|---|---|---|---|---|
Boerner | Leconte | Linnaeus | acuminatus | armandi | coleoptera | linnaeus | |||
YOLOv4 | 95.9 | 94.8 | 85.6 | 70.5 | 89.2 | 81.9 | 91.5 | 87.0 | 25 |
本文模型 | 99.7 | 98.6 | 90.1 | 84.0 | 95.0 | 91.1 | 97.5 | 93.7 | 56 |
MobileNetV3 | 轻量化 PANet | +CBAM | +Focal Loss | mAP/% | 帧率/FPS |
---|---|---|---|---|---|
87.0 | 25 | ||||
| 86.5 | 43 | |||
| 87.8 | 34 | |||
| 90.2 | 26 | |||
| 91.0 | 30 | |||
| | | | 93.7 | 56 |
Tab. 3 Results of ablation experiments
MobileNetV3 | 轻量化 PANet | +CBAM | +Focal Loss | mAP/% | 帧率/FPS |
---|---|---|---|---|---|
87.0 | 25 | ||||
| 86.5 | 43 | |||
| 87.8 | 34 | |||
| 90.2 | 26 | |||
| 91.0 | 30 | |||
| | | | 93.7 | 56 |
注意力模块 | mAP/% | 帧率/FPS |
---|---|---|
无 | 87.0 | 25 |
+SE | 87.8 | 25 |
+ECA | 89.4 | 26 |
+CBAM | 90.2 | 26 |
Tab. 4 Comparison of different attention mechanisms
注意力模块 | mAP/% | 帧率/FPS |
---|---|---|
无 | 87.0 | 25 |
+SE | 87.8 | 25 |
+ECA | 89.4 | 26 |
+CBAM | 90.2 | 26 |
模型 | mAP/% | 帧率/FPS | 模型 | mAP/% | 帧率/FPS |
---|---|---|---|---|---|
Faster‑RCNN | 86.6 | 15 | 文献[ | 84.5 | 50 |
SSD | 79.8 | 23 | 本文模型 | 93.7 | 56 |
YOLOv5 | 91.6 | 36 |
Tab. 5 Comparison of proposed model and other models
模型 | mAP/% | 帧率/FPS | 模型 | mAP/% | 帧率/FPS |
---|---|---|---|---|---|
Faster‑RCNN | 86.6 | 15 | 文献[ | 84.5 | 50 |
SSD | 79.8 | 23 | 本文模型 | 93.7 | 56 |
YOLOv5 | 91.6 | 36 |
1 | 刘汉生. 陷阱式储粮害虫信息采集终端及其系统的研究与实现[D]. 北京:北京邮电大学, 2018. |
LIU H S. The research and implementation of the trap based information acquisition terminal and information system for stored grain pests[D]. Beijing: Beijing University of Posts and Telecommunications, 2018. | |
2 | 竺乐庆,张大兴,张真. 基于韦伯局部描述子和颜色直方图的鳞翅目昆虫翅图像特征描述与种类识别[J]. 昆虫学报, 2015, 58(4): 419-426. |
ZHU L Q, ZHANG D X, ZHANG Z. Feature description of lepidopteran insect wing images based on WLD and HoC and its application in species recognition[J]. Acta Entomologica Sinica, 2015, 58(4): 419-426. | |
3 | GIRSHICK R. Fast R‑CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448. 10.1109/iccv.2015.169 |
4 | REN S Q, HE K M, GIRSHICK R, et al. Faster R‑CNN: towards real‑time object detection with region proposal networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015:91-99. |
5 | DAI J F, LI Y, HE K M, et al. R‑FCN: object detection via region‑based fully convolutional networks[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2016: 379-387. |
6 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944. 10.1109/cvpr.2017.106 |
7 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real‑time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. 10.1109/cvpr.2016.91 |
8 | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6517-6525. 10.1109/cvpr.2017.690 |
9 | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08) [2021-12-10].. 10.1109/cvpr.2017.690 |
10 | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23) [2021-11-05].. |
11 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multiBox detector[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016: 21-37. |
12 | 苗海委,周慧玲. 基于深度学习的粘虫板储粮害虫图像检测算法的研究[J]. 中国粮油学报, 2019, 34(12): 93-99. 10.3969/j.issn.1003-0174.2019.12.016 |
MIAO H W, ZHOU H L. Detection of stored‑grain insects image on sticky board using deep learning[J]. Journal of the Chinese Cereals and Oils Association, 2019, 34(12): 93-99. 10.3969/j.issn.1003-0174.2019.12.016 | |
13 | 候瑞环,杨喜旺,王智超,等. 一种基于YOLOv4‑TIA的林业害虫实时检测方法[J]. 计算机工程, 2022, 48(4): 255-261. |
HOU R H, YANG X W, WANG Z C, et al. A real‑time detection methods for forestry pests based on YOLOv4‑TIA[J]. Computer Engineering, 2022, 48(4): 255-261. | |
14 | 袁哲明,袁鸿杰,言雨璇,等. 基于深度学习的轻量化田间昆虫识别及分类模型[J]. 吉林大学学报(工学版), 2021, 51(3): 1131-1139. |
YUAN Z M, YUAN H J, YAN Y X, et al. Automatic recognition and classification of field insects based on lightweight deep learning model[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(3): 1131-1139. | |
15 | 李启运,纪庆革,洪赛丁. FastFace:实时鲁棒的人脸检测算法[J]. 中国图象图形学报, 2019, 24(10): 1761-1771. 10.11834/jig.180662 |
LI Q Y, JI Q G, HONG S D. FastFace: a real‑time robust algorithm for face detection[J]. Journal of Image and Graphics, 2019, 24(10): 1761-1771. 10.11834/jig.180662 | |
16 | IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet‑level accuracy with 50x fewer parameters and< 0.5 MB model size[EB/OL]. (2016-11-04) [2021-11-22].. |
17 | HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017-04-17) [2021-12-08].. 10.48550/arXiv.1704.04861 |
18 | SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4510-4520. 10.1109/cvpr.2018.00474 |
19 | HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1314-1324. 10.1109/iccv.2019.00140 |
20 | ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6848-6856. 10.1109/cvpr.2018.00716 |
21 | MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11218. Cham: Springer, 2018: 122-138. |
22 | HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1577-1586. 10.1109/cvpr42600.2020.00165 |
23 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19. |
[1] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[2] | Kaili DENG, Weibo WEI, Zhenkuan PAN. Industrial defect detection method with improved masked autoencoder [J]. Journal of Computer Applications, 2024, 44(8): 2595-2603. |
[3] | Zhe KONG, Han LI, Shaowei GAN, Mingru KONG, Bingtao HE, Ziyu GUO, Ducheng JIN, Zhaowen QIU. Structure segmentation model for 3D kidney images based on asymmetric multi-decoder and attention module [J]. Journal of Computer Applications, 2024, 44(7): 2216-2224. |
[4] | Xiaohui CHENG, Yuntian HUANG, Ruifang ZHANG. Lightweight infrared road scene detection model based on multiscale and weighted coordinate attention [J]. Journal of Computer Applications, 2024, 44(6): 1927-1934. |
[5] | Bin XIAO, Yun GAN, Min WANG, Xingpeng ZHANG, Zhaoxing WANG. Network abnormal traffic detection based on port attention and convolutional block attention module [J]. Journal of Computer Applications, 2024, 44(4): 1027-1034. |
[6] | Wei LI, Ling CHEN, Xiuyuan XU, Min ZHU, Jixiang GUO, Kai ZHOU, Hao NIU, Yuchen ZHANG, Shanye YI, Yi ZHANG, Fengming LUO. Interstitial lung disease segmentation algorithm based on multi-task learning [J]. Journal of Computer Applications, 2024, 44(4): 1285-1293. |
[7] | Tianhua CHEN, Jiaxuan ZHU, Jie YIN. Bird recognition algorithm based on attention mechanism [J]. Journal of Computer Applications, 2024, 44(4): 1114-1120. |
[8] | Tao LIU, Shihong JU, Yimeng GAO. Small object detection algorithm from drone perspective based on improved YOLOv8n [J]. Journal of Computer Applications, 2024, 44(11): 3603-3609. |
[9] | Dahai LI, Bingtao LI, Zhendong WANG. Underwater target detection algorithm based on improved YOLOv8 [J]. Journal of Computer Applications, 2024, 44(11): 3610-3616. |
[10] | Hong WANG, Qing QIAN, Huan WANG, Yong LONG. Lightweight image tamper localization algorithm based on large kernel attention convolution [J]. Journal of Computer Applications, 2023, 43(9): 2692-2699. |
[11] | Xiang GUO, Wengang JIANG, Yuhang WANG. Encrypted traffic classification method based on improved Inception-ResNet [J]. Journal of Computer Applications, 2023, 43(8): 2471-2476. |
[12] | Zongzhe LYU, Hui XU, Xiao YANG, Yong WANG, Weijian WANG. Small object detection algorithm of YOLOv5 for safety helmet [J]. Journal of Computer Applications, 2023, 43(6): 1943-1949. |
[13] | Jiazhen ZU, Yongxia ZHOU, Le CHEN. Dual-branch residual low-light image enhancement combined with attention [J]. Journal of Computer Applications, 2023, 43(4): 1240-1247. |
[14] | Zhi CHEN, Xin LI, Liyan LIN, Jing ZHONG, Peng SHI. Multi-channel pathological image segmentation with gated axial self-attention [J]. Journal of Computer Applications, 2023, 43(4): 1269-1277. |
[15] | Yingmao YAO, Xiaoyan JIANG. Video-based person re-identification method based on graph convolution network and self-attention graph pooling [J]. Journal of Computer Applications, 2023, 43(3): 728-735. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||