Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (3): 692-699.DOI: 10.11772/j.issn.1001-9081.2022010089
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Rongjun CHEN1,2, Xuanhui YAN1,2(), Chaocheng YANG1,2
Received:
2022-01-25
Revised:
2022-04-19
Accepted:
2022-04-20
Online:
2022-04-26
Published:
2023-03-10
Contact:
Xuanhui YAN
About author:
CHEN Rongjun, born in 1996, M. S. candidate. His research interests include deep learning, time series analysis.Supported by:
通讯作者:
严宣辉
作者简介:
陈容均(1996—),男,福建三明人,硕士研究生,主要研究方向:深度学习、时间序列分析基金资助:
CLC Number:
Rongjun CHEN, Xuanhui YAN, Chaocheng YANG. Fusion imaging-based recurrent capsule classification network for time series[J]. Journal of Computer Applications, 2023, 43(3): 692-699.
陈容均, 严宣辉, 杨超城. 面向时间序列的混合图像化循环胶囊分类网络[J]. 《计算机应用》唯一官方网站, 2023, 43(3): 692-699.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022010089
数据集 | 类型 | 训练 样本数 | 测试 样本数 | 时间序列长度 | 类别 数 |
---|---|---|---|---|---|
Computers | Device | 250 | 250 | 720 | 2 |
DistalPhalanxOutline Correct | Image | 600 | 276 | 80 | 2 |
Earthquakes | Sensor | 322 | 139 | 512 | 2 |
ECG5000 | ECG | 500 | 4 500 | 140 | 5 |
ElectricDevices | Device | 8 926 | 7 711 | 96 | 7 |
FaceFour | Image | 24 | 88 | 350 | 4 |
FiftyWords | Image | 450 | 455 | 270 | 50 |
InsectWingbeatSound | Sensor | 220 | 1 980 | 256 | 11 |
LargeKitchenAppliances | Device | 375 | 375 | 720 | 3 |
Lightning2 | Sensor | 60 | 61 | 637 | 2 |
Mallat | Simulated | 55 | 2 345 | 1 024 | 8 |
Meat | Spectro | 60 | 60 | 448 | 3 |
MiddlePhalanxOutline AgeGroup | Image | 400 | 154 | 80 | 3 |
MiddlePhalanxTW | Image | 399 | 154 | 80 | 6 |
MoteStrain | Sensor | 20 | 1 252 | 84 | 2 |
PhalangesOutlinesCorrect | Image | 1 800 | 858 | 80 | 2 |
ProximalPhalanxOutline Correct | Image | 600 | 291 | 80 | 2 |
ShapeletSim | Simulated | 20 | 180 | 500 | 2 |
ShapesAll | Image | 600 | 600 | 512 | 60 |
SmallKitchenAppliances | Device | 375 | 375 | 720 | 3 |
SonyAIBORobotSurface1 | Sensor | 20 | 601 | 70 | 2 |
SonyAIBORobotSurface2 | Sensor | 27 | 953 | 65 | 2 |
StarlightCurves | Sensor | 1 000 | 8 236 | 1 024 | 3 |
Strawberry | Spectro | 613 | 370 | 235 | 2 |
Symbols | Image | 25 | 995 | 398 | 6 |
ToeSegmentation1 | Motion | 40 | 228 | 277 | 2 |
TwoLeadECG | ECG | 23 | 1 139 | 82 | 2 |
Wine | Spectro | 57 | 54 | 234 | 2 |
WordSynonyms | Image | 267 | 638 | 270 | 25 |
Worms | Motion | 181 | 77 | 900 | 5 |
Tab.1 Information of UCR datasets
数据集 | 类型 | 训练 样本数 | 测试 样本数 | 时间序列长度 | 类别 数 |
---|---|---|---|---|---|
Computers | Device | 250 | 250 | 720 | 2 |
DistalPhalanxOutline Correct | Image | 600 | 276 | 80 | 2 |
Earthquakes | Sensor | 322 | 139 | 512 | 2 |
ECG5000 | ECG | 500 | 4 500 | 140 | 5 |
ElectricDevices | Device | 8 926 | 7 711 | 96 | 7 |
FaceFour | Image | 24 | 88 | 350 | 4 |
FiftyWords | Image | 450 | 455 | 270 | 50 |
InsectWingbeatSound | Sensor | 220 | 1 980 | 256 | 11 |
LargeKitchenAppliances | Device | 375 | 375 | 720 | 3 |
Lightning2 | Sensor | 60 | 61 | 637 | 2 |
Mallat | Simulated | 55 | 2 345 | 1 024 | 8 |
Meat | Spectro | 60 | 60 | 448 | 3 |
MiddlePhalanxOutline AgeGroup | Image | 400 | 154 | 80 | 3 |
MiddlePhalanxTW | Image | 399 | 154 | 80 | 6 |
MoteStrain | Sensor | 20 | 1 252 | 84 | 2 |
PhalangesOutlinesCorrect | Image | 1 800 | 858 | 80 | 2 |
ProximalPhalanxOutline Correct | Image | 600 | 291 | 80 | 2 |
ShapeletSim | Simulated | 20 | 180 | 500 | 2 |
ShapesAll | Image | 600 | 600 | 512 | 60 |
SmallKitchenAppliances | Device | 375 | 375 | 720 | 3 |
SonyAIBORobotSurface1 | Sensor | 20 | 601 | 70 | 2 |
SonyAIBORobotSurface2 | Sensor | 27 | 953 | 65 | 2 |
StarlightCurves | Sensor | 1 000 | 8 236 | 1 024 | 3 |
Strawberry | Spectro | 613 | 370 | 235 | 2 |
Symbols | Image | 25 | 995 | 398 | 6 |
ToeSegmentation1 | Motion | 40 | 228 | 277 | 2 |
TwoLeadECG | ECG | 23 | 1 139 | 82 | 2 |
Wine | Spectro | 57 | 54 | 234 | 2 |
WordSynonyms | Image | 267 | 638 | 270 | 25 |
Worms | Motion | 181 | 77 | 900 | 5 |
动作类型 | 训练样本数 | 测试样本数 |
---|---|---|
共计 | 7 352 | 2 947 |
走路 | 1 374 | 532 |
上楼 | 1 286 | 491 |
下楼 | 1 407 | 537 |
坐下 | 1 226 | 496 |
站直 | 986 | 420 |
躺下 | 1 073 | 471 |
Tab.2 Information of HAR dataset
动作类型 | 训练样本数 | 测试样本数 |
---|---|---|
共计 | 7 352 | 2 947 |
走路 | 1 374 | 532 |
上楼 | 1 286 | 491 |
下楼 | 1 407 | 537 |
坐下 | 1 226 | 496 |
站直 | 986 | 420 |
躺下 | 1 073 | 471 |
数据集 | Fusion-CNN | GAF-Capsnet | RP-Capsnet | MTF-Capsnet | FIR-Capsnet |
---|---|---|---|---|---|
Computers | 0.630 | 0.710 | 0.730 | 0.720 | 0.760 |
DistalPhalanxOutlineCorrect | 0.772 | 0.790 | 0.772 | 0.784 | 0.858 |
Earthquakes | 0.895 | 0.753 | 0.828 | 0.753 | 0.785 |
ECG5000 | 0.823 | 0.930 | 0.945 | 0.946 | 0.945 |
ElectricDevices | 0.719 | 0.770 | 0.809 | 0.776 | 0.849 |
FaceFour | 0.826 | 1.000 | 1.000 | 0.957 | 0.957 |
FiftyWords | 0.470 | 0.630 | 0.586 | 0.646 | 0.680 |
InsectWingbeatSound | 0.616 | 0.654 | 0.666 | 0.693 | 0.691 |
LargeKitchenAppliances | 0.507 | 0.610 | 0.633 | 0.640 | 0.627 |
Lightning2 | 0.720 | 0.800 | 0.800 | 0.800 | 0.800 |
Mallat | 0.960 | 0.996 | 1.000 | 1.000 | 1.000 |
Meat | 0.833 | 0.958 | 0.958 | 1.000 | 0.958 |
MiddlePhalanxOutlineAgeGroup | 0.604 | 0.658 | 0.667 | 0.720 | 0.730 |
MiddlePhalanxTW | 0.559 | 0.559 | 0.631 | 0.523 | 0.559 |
MoteStrain | 0.914 | 0.933 | 0.914 | 0.965 | 0.929 |
PhalangesOutlinesCorrect | 0.724 | 0.780 | 0.803 | 0.780 | 0.800 |
ProximalPhalanxOutlineCorrect | 0.777 | 0.810 | 0.804 | 0.872 | 0.849 |
ShapeletSim | 0.825 | 0.650 | 0.625 | 0.625 | 0.700 |
ShapesAll | 0.608 | 0.713 | 0.771 | 0.742 | 0.833 |
SmallKitchenAppliances | 0.573 | 0.653 | 0.726 | 0.693 | 0.720 |
SonyAIBORobotSurface1 | 0.872 | 0.952 | 0.952 | 0.960 | 0.968 |
SonyAIBORobotSurface2 | 0.948 | 0.969 | 0.913 | 0.949 | 0.969 |
StarlightCurves | 0.975 | 0.971 | 0.962 | 0.984 | 0.905 |
Strawberry | 0.954 | 0.959 | 0.970 | 0.975 | 0.964 |
Symbols | 0.980 | 0.975 | 0.956 | 0.971 | 0.961 |
ToeSegmentation1 | 0.815 | 0.796 | 0.796 | 0.833 | 0.870 |
TwoLeadECG | 0.991 | 1.000 | 0.991 | 0.991 | 1.000 |
Wine | 0.869 | 1.000 | 1.000 | 0.826 | 1.000 |
WordSynonyms | 0.541 | 0.678 | 0.552 | 0.707 | 0.729 |
Worms | 0.774 | 0.742 | 0.871 | 0.871 | 0.871 |
平均准确率 | 0.748 | 0.792 | 0.802 | 0.802 | 0.821 |
方差 | 0.192 | 0.182 | 0.173 | 0.176 | 0.156 |
获胜次数 | 3 | 5 | 8 | 11 | 15 |
平均序值 | 4.129 | 3.064 | 2.645 | 2.322 | 1.903 |
MPCE | 0.067 | 0.056 | 0.054 | 0.054 | 0.050 |
Tab.3 Classification accuracy on 30 UCR datasets
数据集 | Fusion-CNN | GAF-Capsnet | RP-Capsnet | MTF-Capsnet | FIR-Capsnet |
---|---|---|---|---|---|
Computers | 0.630 | 0.710 | 0.730 | 0.720 | 0.760 |
DistalPhalanxOutlineCorrect | 0.772 | 0.790 | 0.772 | 0.784 | 0.858 |
Earthquakes | 0.895 | 0.753 | 0.828 | 0.753 | 0.785 |
ECG5000 | 0.823 | 0.930 | 0.945 | 0.946 | 0.945 |
ElectricDevices | 0.719 | 0.770 | 0.809 | 0.776 | 0.849 |
FaceFour | 0.826 | 1.000 | 1.000 | 0.957 | 0.957 |
FiftyWords | 0.470 | 0.630 | 0.586 | 0.646 | 0.680 |
InsectWingbeatSound | 0.616 | 0.654 | 0.666 | 0.693 | 0.691 |
LargeKitchenAppliances | 0.507 | 0.610 | 0.633 | 0.640 | 0.627 |
Lightning2 | 0.720 | 0.800 | 0.800 | 0.800 | 0.800 |
Mallat | 0.960 | 0.996 | 1.000 | 1.000 | 1.000 |
Meat | 0.833 | 0.958 | 0.958 | 1.000 | 0.958 |
MiddlePhalanxOutlineAgeGroup | 0.604 | 0.658 | 0.667 | 0.720 | 0.730 |
MiddlePhalanxTW | 0.559 | 0.559 | 0.631 | 0.523 | 0.559 |
MoteStrain | 0.914 | 0.933 | 0.914 | 0.965 | 0.929 |
PhalangesOutlinesCorrect | 0.724 | 0.780 | 0.803 | 0.780 | 0.800 |
ProximalPhalanxOutlineCorrect | 0.777 | 0.810 | 0.804 | 0.872 | 0.849 |
ShapeletSim | 0.825 | 0.650 | 0.625 | 0.625 | 0.700 |
ShapesAll | 0.608 | 0.713 | 0.771 | 0.742 | 0.833 |
SmallKitchenAppliances | 0.573 | 0.653 | 0.726 | 0.693 | 0.720 |
SonyAIBORobotSurface1 | 0.872 | 0.952 | 0.952 | 0.960 | 0.968 |
SonyAIBORobotSurface2 | 0.948 | 0.969 | 0.913 | 0.949 | 0.969 |
StarlightCurves | 0.975 | 0.971 | 0.962 | 0.984 | 0.905 |
Strawberry | 0.954 | 0.959 | 0.970 | 0.975 | 0.964 |
Symbols | 0.980 | 0.975 | 0.956 | 0.971 | 0.961 |
ToeSegmentation1 | 0.815 | 0.796 | 0.796 | 0.833 | 0.870 |
TwoLeadECG | 0.991 | 1.000 | 0.991 | 0.991 | 1.000 |
Wine | 0.869 | 1.000 | 1.000 | 0.826 | 1.000 |
WordSynonyms | 0.541 | 0.678 | 0.552 | 0.707 | 0.729 |
Worms | 0.774 | 0.742 | 0.871 | 0.871 | 0.871 |
平均准确率 | 0.748 | 0.792 | 0.802 | 0.802 | 0.821 |
方差 | 0.192 | 0.182 | 0.173 | 0.176 | 0.156 |
获胜次数 | 3 | 5 | 8 | 11 | 15 |
平均序值 | 4.129 | 3.064 | 2.645 | 2.322 | 1.903 |
MPCE | 0.067 | 0.056 | 0.054 | 0.054 | 0.050 |
网络 | 各个动作类型准确率 | 总体 准确率 | |||||
---|---|---|---|---|---|---|---|
走路 | 上楼 | 下楼 | 坐下 | 站直 | 躺下 | ||
Fusion-CNN | 0.878 | 0.856 | 0.865 | 0.926 | 0.873 | 0.918 | 0.878 |
GAF-Capsnet | 0.933 | 0.904 | 0.929 | 0.953 | 0.943 | 0.896 | 0.933 |
RP-Capsnet | 0.866 | 0.923 | 0.946 | 0.966 | 0.989 | 0.921 | 0.866 |
MTF-Capsnet | 0.909 | 0.900 | 0.831 | 0.994 | 1.000 | 0.935 | 0.929 |
FIR-Capsnet | 0.963 | 0.942 | 0.871 | 1.000 | 0.998 | 0.922 | 0.950 |
Tab.4 Classification accuracy on HAR dataset
网络 | 各个动作类型准确率 | 总体 准确率 | |||||
---|---|---|---|---|---|---|---|
走路 | 上楼 | 下楼 | 坐下 | 站直 | 躺下 | ||
Fusion-CNN | 0.878 | 0.856 | 0.865 | 0.926 | 0.873 | 0.918 | 0.878 |
GAF-Capsnet | 0.933 | 0.904 | 0.929 | 0.953 | 0.943 | 0.896 | 0.933 |
RP-Capsnet | 0.866 | 0.923 | 0.946 | 0.966 | 0.989 | 0.921 | 0.866 |
MTF-Capsnet | 0.909 | 0.900 | 0.831 | 0.994 | 1.000 | 0.935 | 0.929 |
FIR-Capsnet | 0.963 | 0.942 | 0.871 | 1.000 | 0.998 | 0.922 | 0.950 |
1 | QIANG Y, XINDONG W. 10 Challenging problems in data mining research[J]. International Journal of Information Technology and Decision Making, 2006, 5(4): 597-604. |
2 | ESLING P, AGON C. Time-series data mining[J]. ACM Computing Surveys, 2012, 45(1): 1-34. 10.1145/2379776.2379788 |
3 | 王鑫,吴际,刘超,等. 基于LSTM循环神经网络的故障时间序列预测[J]. 北京航空航天大学学报, 2018, 44(4): 772-784. 10.13700/j.bh.1001-5965.2017.0285 |
WANG X, WU J, LIU C, et al. Exploring LSTM based recurrent neural network for failure time series prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 772-784. 10.13700/j.bh.1001-5965.2017.0285 | |
4 | BÖSE J H, FLUNKERT V, GASTHAUS J, et al. Probabilistic demand forecasting at scale[J]. Proceedings of the VLDB Endowment, 2017, 10(12): 1694-1705. 10.14778/3137765.3137775 |
5 | CAI L, JANOWICZ K, MAI G C, et al. Traffic transformer: capturing the continuity and periodicity of time series for traffic forecasting[J]. Transactions in GIS, 2020, 24(3): 736-755. 10.1111/tgis.12644 |
6 | 李浩,张杉,曹斌,等. 基于城市道路卡口数据的交通流量预测[J]. 重庆大学学报, 2020, 43(11):29-40. 10.11835/j.issn.1000-582X.2020.11.004 |
LI H, ZHANG S, CAO B, et al. Prediction traffic flow based on traffic data of urban road check points[J]. Journal of Chongqing University, 2020, 43(11): 29-40. 10.11835/j.issn.1000-582X.2020.11.004 | |
7 | CARVALHAIS N, FORKEL M, KHOMIK M, et al. Global covariation of carbon turnover times with climate in terrestrial ecosystems[J]. Nature, 2014, 514(7521): 213-217. 10.1038/nature13731 |
8 | 高世乐,王滢,李海林,等. 基于矩阵画像的金融时序数据预测方法[J]. 计算机应用, 2021, 41(1):199-207. 10.11772/j.issn.1001-9081.2020060877 |
GAO S L, WANG Y, LI H L, et al. Prediction method on financial time series data based on matrix profile[J]. Journal of Computer Applications, 2021, 41(1): 199-207. 10.11772/j.issn.1001-9081.2020060877 | |
9 | RAJAN D, THIAGARAJAN J J. A generative modeling approach to limited channel ECG classification[C]// Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2018: 2571-2574. 10.1109/embc.2018.8512757 |
10 | 朱兆坤,李金宝. 多特征信息融合LSTM-RNN检测OSA方法[J]. 计算机研究与发展, 2020, 57(12):2547-2555. 10.7544/issn1000-1239.2020.20190583 |
ZHU Z K, LI J B. Multi-feature information fusion LSTM-RNN detection for OSA[J]. Journal of Computer Research and Development, 2020, 57(12): 2547-2555. 10.7544/issn1000-1239.2020.20190583 | |
11 | NWEKE H F, TEH Y W, AL-GARADI M A, et al. Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: state of the art and research challenges[J]. Expert Systems with Applications, 2018, 105: 233-261. 10.1016/j.eswa.2018.03.056 |
12 | 吴海涛,陆志平,胡晨骏. 混合神经网络模型在人体活动识别中的研究[J]. 计算机应用与软件, 2021, 38(8):187-193, 219. 10.3969/j.issn.1000-386x.2021.08.029 |
WU H T, LU Z P, HU C J. Human activity recognition based on hybrid neural network models[J]. Computer Applications and Software, 2021, 38(8): 187-193, 219. 10.3969/j.issn.1000-386x.2021.08.029 | |
13 | SUSTO G A, CENEDESE A, TERZI M. Time-series classification methods: review and applications to power systems data[M]// ARGHANDEHR, ZHOU Y X. Big Data Application in Power Systems. Amsterdam: Elsevier Science, 2018: 179-220. 10.1016/b978-0-12-811968-6.00009-7 |
14 | SHOKOOHI-YEKTA M, HU B, JIN H X, et al. Generalizing DTW to the multi-dimensional case requires an adaptive approach[J]. Data Mining and Knowledge Discovery, 2017, 31(1): 1-31. 10.1007/s10618-016-0455-0 |
15 | HILLS J, LINES J, BARANAUSKAS E, et al. Classification of time series by shapelet transformation[J]. Data Mining and Knowledge Discovery, 2014, 28(4): 851-881. 10.1007/s10618-013-0322-1 |
16 | YE L X, KEOGH E. Time series shapelets: a new primitive for data mining[C]// Proceedings of the 2009 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009: 947-956. 10.1145/1557019.1557122 |
17 | DENG H T, RUNGER G, TUV E, et al. A time series forest for classification and feature extraction[J]. Information Sciences, 2013, 239: 142-153. 10.1016/j.ins.2013.02.030 |
18 | LINES J, TAYLOR S, BAGNALL A. Time series classification with HIVE-COTE: the hierarchical vote collective of transformation-based ensembles[J]. ACM Transactions on Knowledge Discovery from Data, 2018, 12(5): No.52. 10.1145/3182382 |
19 | SCHÄFER P. The BOSS is concerned with time series classification in the presence of noise[J]. Data Mining and Knowledge Discovery, 2015, 29(6): 1505-1530. 10.1007/s10618-014-0377-7 |
20 | SCHÄFER P, LESER U. Fast and accurate time series classification with WEASEL[C]// Proceedings of the 2017 ACM Conference on Information and Knowledge Management. New York: ACM, 2017: 637-646. 10.1145/3132847.3132980 |
21 | SCHÄFER P, HÖGQVIST M. SFA: a symbolic Fourier approximation and index for similarity search in high dimensional datasets[C]// Proceedings of the 15th International Conference on Extending Database Technology. New York: ACM, 2012: 516-527. 10.1145/2247596.2247656 |
22 | WANG J Y, WANG Z, LI J F, et al. Multilevel wavelet decomposition network for interpretable time series analysis[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 2437-2446. 10.1145/3219819.3220060 |
23 | ZHENG Y, LIU Q, CHEN E H, et al. Exploiting multi-channels deep convolutional neural networks for multivariate time series classification[J]. Frontiers of Computer Science, 2016, 10(1): 96-112. 10.1007/s11704-015-4478-2 |
24 | ZHAO B D, LU H Z, CHEN S F, et al. Convolutional neural networks for time series classification[J]. Journal of Systems Engineering and Electronics, 2017, 28(1) :162-169. 10.21629/jsee.2017.01.18 |
25 | ZHANG X C, GAO Y F, LIN J, et al. TapNet: multivariate time series classification with attentional prototypical network[C]// Proceedings of the 24th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 6845-6852. 10.1609/aaai.v34i04.6165 |
26 | ZHANG Y, HOU Y, OUYANG K W, et al. Multi-scale signed recurrence plot based time series classification using inception architectural networks[J]. Pattern Recognition, 2022, 123: No.108385. 10.1016/j.patcog.2021.108385 |
27 | CHAN K P, FU A W C. Efficient time series matching by wavelets[C]// Proceedings of the 15th International Conference on Data Engineering. Piscataway: IEEE, 1999: 126-133. 10.1109/icde.1999.754915 |
28 | WANG Z G, OATES T. Imaging time-series to improve classification and imputation[C]// Proceedings of the 24th International Joint Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2015: 3939-3945. |
29 | HATAMI N, GAVET Y, DEBAYLE J. Classification of time-series images using deep convolutional neural networks[C]// Proceedings of the SPIE 10696, 10th International Conference on Machine Vision. Bellingham, WA: SPIE, 2018: No.106960Y. 10.1117/12.2309486 |
30 | RODRIGUES N M, BATISTA J E, MARIANO P, et al. Artificial intelligence meets marine ecotoxicology: applying deep learning to bio-optical data from marine diatoms exposed to legacy and emerging contaminants[J]. Biology, 2021, 10(9): No.932. 10.3390/biology10090932 |
31 | ISMAIL FAWAZ H, FORESTIER G, WEBER J, et al. Deep learning for time series classification: a review[J]. Data Mining and Knowledge Discovery, 2019, 33(4): 917-963. 10.1007/s10618-019-00619-1 |
32 | LUO Y, MESGARANI N. Conv-TasNet: surpassing ideal time-frequency magnitude masking for speech separation[J]. IEEE/ACM Transactions on Audio Speech and Language Processing, 2019, 27(8): 1256-1266. 10.1109/taslp.2019.2915167 |
33 | SABOUR S, FROSST N, HINTON G E. Dynamic routing between capsules[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 3859-3869. |
34 | 王飞龙,刘萍,张玲,等. 改进胶囊网络的小样本图像分类算法[J]. 计算机科学与探索, 2022, 16(10):2387-2394. 10.3778/j.issn.1673-9418.2102026 |
WANG F L, LIU P, ZHANG L, et.al. Modified algorithm of capsule network for classifying small sample image[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10):2387-2394. 10.3778/j.issn.1673-9418.2102026 | |
35 | 胡春涛,夏玲玲,张亮,等. 基于胶囊网络和卷积网络的文本分类对比[J]. 计算机技术与发展, 2020, 30(10):86-91. 10.3969/j.issn.1673-629X.2020.10.016 |
HU C T, XIA L L, ZHANG L, et al. Comparative study of news text classification based on capsule network and convolution network[J]. Computer Technology and Development, 2020, 30(10):86-91. 10.3969/j.issn.1673-629X.2020.10.016 | |
36 | RAJASEGARAN J, JAYASUNDARA V, JAYASEKARA S, et al. DeepCaps: going deeper with capsule networks[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 10717-10725. 10.1109/cvpr.2019.01098 |
37 | 陈解元. 基于LSTM 的卷积神经网络异常流量检测方法[J]. 网络与信息安全, 2021, 40(7):42-46. 10.19358/j.issn.2096-5133.2021.07.007 |
CHEN X Y. Network intrusion detection based on convolutional neural networks with LSTM[J]. Network and Information Security, 2021, 40(7): 42-46. 10.19358/j.issn.2096-5133.2021.07.007 | |
38 | DAU H A, BAGNALL A, KAMGAR K, et al. The UCR time series archive[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6(6): 1293-1305. 10.1109/jas.2019.1911747 |
39 | 马超红. 基于PAA的时间序列早期分类[J]. 计算机科学,2018, 45(2):148-162. 10.11896/j.issn.1002-137X.2018.02.050 |
MA C H. Early classification of time series based on piecewise aggregate approximation[J]. Computer Science, 2018, 45(2): 148-162. 10.11896/j.issn.1002-137X.2018.02.050 | |
40 | WANG Z G, YAN W Z, OATES T. Time series classification from scratch with deep neural networks: a strong baseline[C]// Proceedings of the 2017 International Joint Conference on Neural Networks. Piscataway: IEEE, 2017: 1578-1585. 10.1109/ijcnn.2017.7966039 |
[1] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[2] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[3] | Lilin FAN, Fukang CAO, Wanting WANG, Kai YANG, Zhaoyu SONG. Intermittent demand forecasting method based on adaptive matching of demand patterns [J]. Journal of Computer Applications, 2024, 44(9): 2747-2755. |
[4] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[5] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[6] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[7] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[8] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[9] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[10] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. |
[11] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[12] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. |
[13] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
[14] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[15] | Zhi ZHANG, Xin LI, Naifu YE, Kaixi HU. DKP: defending against model stealing attacks based on dark knowledge protection [J]. Journal of Computer Applications, 2024, 44(7): 2080-2086. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||