Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (11): 3385-3395.DOI: 10.11772/j.issn.1001-9081.2022101636

• Artificial intelligence • Previous Articles     Next Articles

Review of multi-modal medical image segmentation based on deep learning

Meng DOU1,2, Zhebin CHEN1,2, Xin WANG3, Jitao ZHOU3, Yu YAO1,2()   

  1. 1.Chengdu Institute of Computer Application,Chinese Academy of Sciences,Chengdu Sichuan 610213,China
    2.School of Computer Science and Technology,University of Chinese Academy of Sciences,Beijing 100049,China
    3.Department of Abdominal Oncology,West China Hospital of Sichuan University,Chengdu Sichuan 610041,China
  • Received:2022-11-04 Revised:2023-04-26 Accepted:2023-05-04 Online:2023-05-24 Published:2023-11-10
  • Contact: Yu YAO
  • About author:DOU Meng, born in 1993, Ph. D. candidate. His research interests include medical image analysis, deep learning.
    CHEN Zhebin, born in 1993, Ph. D. candidate. His research interests include medical image analysis, deep learning.
    WANG Xin, born in 1977, Ph. D., professor. Her research interests include diagnosis and treatment of rectal tumors.
    ZHOU Jitao, born in 1985, Ph. D., attending physician. Her research interests include diagnosis and treatment of rectal tumors.
    YAO Yu, born in 1980, Ph. D., professor. His research interests include medical image analysis, machine learning.
  • Supported by:
    National Natural Science Foundation of China(82073338);Key Research and Development Project of Sichuan Science and Technology Plan(2022YFS0217)

基于深度学习的多模态医学图像分割综述

窦猛1,2, 陈哲彬1,2, 王辛3, 周继陶3, 姚宇1,2()   

  1. 1.中国科学院 成都计算机应用研究所, 成都 610213
    2.中国科学院大学 计算机科学与技术学院, 北京 100049
    3.四川大学华西医院 腹部肿瘤科, 成都 610041
  • 通讯作者: 姚宇
  • 作者简介:窦猛(1993—),男,山东滨州人,博士研究生,主要研究方向:医学图像分析、深度学习
    陈哲彬(1993—),男,贵州遵义人,博士研究生,主要研究方向:医学图像分析、深度学习
    王辛(1977—),女,四川成都人,教授,博士,主要研究方向:直肠肿瘤诊断与治疗
    周继陶(1985—),女,四川成都人,主治医师,博士,主要研究方向:直肠肿瘤诊断与治疗
    姚宇(1980—),男,四川宜宾人,教授,博士,主要研究方向:医学图像分析、机器学习。 Casitmed2022@163.com
  • 基金资助:
    国家自然科学基金资助项目(82073338);四川省科技计划项目重点研发项目(2022YFS0217)

Abstract:

Multi-modal medical images can provide clinicians with rich information of target areas (such as tumors, organs or tissues). However, effective fusion and segmentation of multi-modal images is still a challenging problem due to the independence and complementarity of multi-modal images. Traditional image fusion methods have difficulty in addressing this problem, leading to widespread research on deep learning-based multi-modal medical image segmentation algorithms. The multi-modal medical image segmentation task based on deep learning was reviewed in terms of principles, techniques, problems, and prospects. Firstly, the general theory of deep learning and multi-modal medical image segmentation was introduced, including the basic principles and development processes of deep learning and Convolutional Neural Network (CNN), as well as the importance of the multi-modal medical image segmentation task. Secondly, the key concepts of multi-modal medical image segmentation was described, including data dimension, preprocessing, data enhancement, loss function, and post-processing, etc. Thirdly, different multi-modal segmentation networks based on different fusion strategies were summarized and analyzed. Finally, several common problems in medical image segmentation were discussed, the summary and prospects for future research were given.

Key words: deep learning, multi-modal, medical image, image fusion, image segmentation

摘要:

多模态医学图像可以为临床医生提供靶区(如肿瘤、器官或组织)的丰富信息。然而,由于多模态图像之间相互独立且仅有互补性,如何有效融合多模态图像并进行分割仍是亟待解决的问题。传统的图像融合方法难以有效解决此问题,因此基于深度学习的多模态医学图像分割算法得到了广泛的研究。从原理、技术、问题及展望等方面对基于深度学习的多模态医学图像分割任务进行了综述。首先,介绍了深度学习与多模态医学图像分割的一般理论,包括深度学习与卷积神经网络(CNN)的基本原理与发展历程,以及多模态医学图像分割任务的重要性;其次,介绍了多模态医学图像分割的关键概念,包括数据维度、预处理、数据增强、损失函数以及后处理等;接着,对基于不同融合策略的多模态分割网络进行综述,对不同方式的融合策略进行分析;最后,对医学图像分割过程中常见的几个问题进行探讨,并对今后研究作了总结与展望。

关键词: 深度学习, 多模态, 医学图像, 图像融合, 图像分割

CLC Number: