Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (11): 3385-3395.DOI: 10.11772/j.issn.1001-9081.2022101636
• Artificial intelligence • Previous Articles Next Articles
Meng DOU1,2, Zhebin CHEN1,2, Xin WANG3, Jitao ZHOU3, Yu YAO1,2()
Received:
2022-11-04
Revised:
2023-04-26
Accepted:
2023-05-04
Online:
2023-05-24
Published:
2023-11-10
Contact:
Yu YAO
About author:
DOU Meng, born in 1993, Ph. D. candidate. His research interests include medical image analysis, deep learning.Supported by:
窦猛1,2, 陈哲彬1,2, 王辛3, 周继陶3, 姚宇1,2()
通讯作者:
姚宇
作者简介:
窦猛(1993—),男,山东滨州人,博士研究生,主要研究方向:医学图像分析、深度学习基金资助:
CLC Number:
Meng DOU, Zhebin CHEN, Xin WANG, Jitao ZHOU, Yu YAO. Review of multi-modal medical image segmentation based on deep learning[J]. Journal of Computer Applications, 2023, 43(11): 3385-3395.
窦猛, 陈哲彬, 王辛, 周继陶, 姚宇. 基于深度学习的多模态医学图像分割综述[J]. 《计算机应用》唯一官方网站, 2023, 43(11): 3385-3395.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022101636
数据集 | 图像数 | 分割任务 | 图像种类 | |
---|---|---|---|---|
训练集 | 测试集 | |||
BraTS 2012 | 35 | 15 | 脑肿瘤 | T1w, T1ce, T2w, Flair |
BraTS 2013 | 35 | 25 | 脑肿瘤 | T1w, T1ce, T2w, Flair |
BraTS 2014 | 200 | 38 | 脑肿瘤 | T1w, T1ce, T2w, Flair |
BraTS 2015 | 200 | 53 | 脑肿瘤 | T1w, T1ce, T2w, Flair |
BraTS 2016 | 200 | 191 | 脑肿瘤 | T1w, T1ce, T2w, Flair |
BraTS 2017 | 285 | 146 | 脑肿瘤 | T1w, T1ce, T2w, Flair |
BraTS 2018 | 285 | 191 | 脑肿瘤 | T1w, T1ce, T2w, Flair |
ISLES 2015 | 28 | 36 | 缺血性 中风病变 | T1w, T2w, TSE, Flair, DWI, TFE/TSE |
MRBrainS13 | 5 | 15 | 脑组织 | T1w, T1_IR, Flair |
NeoBrainS12 | 20 | 5 | 脑组织 | T1w, T2w |
Iseg-2017 | 10 | 13 | 脑组织 | T1w, T2w |
CHAOS | 20 | 20 | 腹部器官 | CT, T1-DUAL, T2-SPIR |
IVDM3Seg | 16 | 8 | 椎间盘 | In-phase, Opposed-phase, Fat, Water |
Tab. 1 Commonly used datasets in field of multi-modal medical image segmentation
数据集 | 图像数 | 分割任务 | 图像种类 | |
---|---|---|---|---|
训练集 | 测试集 | |||
BraTS 2012 | 35 | 15 | 脑肿瘤 | T1w, T1ce, T2w, Flair |
BraTS 2013 | 35 | 25 | 脑肿瘤 | T1w, T1ce, T2w, Flair |
BraTS 2014 | 200 | 38 | 脑肿瘤 | T1w, T1ce, T2w, Flair |
BraTS 2015 | 200 | 53 | 脑肿瘤 | T1w, T1ce, T2w, Flair |
BraTS 2016 | 200 | 191 | 脑肿瘤 | T1w, T1ce, T2w, Flair |
BraTS 2017 | 285 | 146 | 脑肿瘤 | T1w, T1ce, T2w, Flair |
BraTS 2018 | 285 | 191 | 脑肿瘤 | T1w, T1ce, T2w, Flair |
ISLES 2015 | 28 | 36 | 缺血性 中风病变 | T1w, T2w, TSE, Flair, DWI, TFE/TSE |
MRBrainS13 | 5 | 15 | 脑组织 | T1w, T1_IR, Flair |
NeoBrainS12 | 20 | 5 | 脑组织 | T1w, T2w |
Iseg-2017 | 10 | 13 | 脑组织 | T1w, T2w |
CHAOS | 20 | 20 | 腹部器官 | CT, T1-DUAL, T2-SPIR |
IVDM3Seg | 16 | 8 | 椎间盘 | In-phase, Opposed-phase, Fat, Water |
方法来源 | 数据集 | 数据 | 网络结构 | 融合方式 | 分割精度(DICE) |
---|---|---|---|---|---|
文献[ | BraTS2013 | 3D | CNN | 输入级融合 | ET:0.770; WT:0.880; TC:0.830 |
文献[ | BraTS2015 | 3D patch | CNN+CRF | 输入级融合 | ET:0.728; WT:0.901; TC:0.754 |
文献[ | BraTS2016 | 2D | FCN | 输入级融合 | ET:0.720; WT:0.870; TC:0.810 |
文献[ | BraTS2017 | 3D | U-Net/FCN | 输入级融合 | ET:0.729; WT:0.886; TC:0.785 |
文献[ | BraTS2018 | 3D | U-Net+VAE | 输入级融合 | ET:0.766; WT:0.884; TC:0.815 |
文献[ | BraTS2018 | 2D slice | CNN+Attention | 中间级融合 | ET:0.734; WT:0.834; TC:0.783 |
文献[ | BraTS2018 | 3D patch | U-Net+Attention | 中间级融合 | ET:0.688; WT:0.876; TC:0.784 |
文献[ | BraTS2018 | 2D slice | U-Net+GAN | 决策级融合 | ET:0.831; WT:0.873; TC:0.656 |
文献[ | BraTS2020 | 3D patch | U-Net+Transformer | 输入级融合 | ET:0.787; WT:0.901; TC:0.817 |
文献[ | MRBrainS13 | 3D patch | CNN+DenseNet | 中间级融合 | CSF:0.834; WM:0.895; GM:0.863 |
文献[ | IVD | 2D slice | U-Net+DenseNet | 中间级融合 | 0.919 ± 0.018 |
Tab. 2 Comparison of different fusion strategies
方法来源 | 数据集 | 数据 | 网络结构 | 融合方式 | 分割精度(DICE) |
---|---|---|---|---|---|
文献[ | BraTS2013 | 3D | CNN | 输入级融合 | ET:0.770; WT:0.880; TC:0.830 |
文献[ | BraTS2015 | 3D patch | CNN+CRF | 输入级融合 | ET:0.728; WT:0.901; TC:0.754 |
文献[ | BraTS2016 | 2D | FCN | 输入级融合 | ET:0.720; WT:0.870; TC:0.810 |
文献[ | BraTS2017 | 3D | U-Net/FCN | 输入级融合 | ET:0.729; WT:0.886; TC:0.785 |
文献[ | BraTS2018 | 3D | U-Net+VAE | 输入级融合 | ET:0.766; WT:0.884; TC:0.815 |
文献[ | BraTS2018 | 2D slice | CNN+Attention | 中间级融合 | ET:0.734; WT:0.834; TC:0.783 |
文献[ | BraTS2018 | 3D patch | U-Net+Attention | 中间级融合 | ET:0.688; WT:0.876; TC:0.784 |
文献[ | BraTS2018 | 2D slice | U-Net+GAN | 决策级融合 | ET:0.831; WT:0.873; TC:0.656 |
文献[ | BraTS2020 | 3D patch | U-Net+Transformer | 输入级融合 | ET:0.787; WT:0.901; TC:0.817 |
文献[ | MRBrainS13 | 3D patch | CNN+DenseNet | 中间级融合 | CSF:0.834; WM:0.895; GM:0.863 |
文献[ | IVD | 2D slice | U-Net+DenseNet | 中间级融合 | 0.919 ± 0.018 |
1 | 范立南,王晶,王银玲.多模态医学图像融合技术综述[J].沈阳大学学报,2009,21(3):96-100. 10.3969/j.issn.1008-9225.2009.03.027 |
FAN L N, WANG J, WANG Y L. A summary of multimodality medical image fusion technology[J]. Journal of Shenyang University, 2009, 21(3): 96-100. 10.3969/j.issn.1008-9225.2009.03.027 | |
2 | 邹诚实,岑婷.腹部CT及MRI图像融合配准在临床中的应用[J].上海医学影像,2002,11(4):250-253. 10.3969/j.issn.1008-617X.2002.04.003 |
ZOU C S, CEN T. Abdomen CT and MRI image fusion technique and its clinical application [J]. Shanghai Medical Imaging, 2002,11(4): 250-253. 10.3969/j.issn.1008-617X.2002.04.003 | |
3 | GUO Z, LI X, HUANG H, et al. Deep learning-based image segmentation on multimodal medical imaging [J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2019, 3(2): 162-169. 10.1109/trpms.2018.2890359 |
4 | KHALEGHI B, KHAMIS A, KARRAY F O, et al. Multisensor data fusion: a review of the state-of-the-art [J]. Information Fusion, 2013, 14(1): 28-44. 10.1016/j.inffus.2011.08.001 |
5 | 赵澄东,王旭辉,杨静宇.一种基于改进的概率图像融合方法[J].计算机工程与应用,2012,48(8):182-184. 10.3778/j.issn.1002-8331.2012.08.052 |
ZHAO C D, WANG X H, YANG J Y. Method of image fusion based on improved probability theory [J]. Computer Engineering and Applications, 2012, 48(8): 182-184. 10.3778/j.issn.1002-8331.2012.08.052 | |
6 | DAS S, KUNDU MK. A neuro-fuzzy approach for medical image fusion [J]. IEEE Transactions on Biomedical Engineering, 2013, 60(12): 3347-3353. 10.1109/tbme.2013.2282461 |
7 | BALASUBRAMANIAM P, ANANTHI V P. Image fusion using intuitionistic fuzzy sets [J]. Information Fusion, 2014, 20: 21-30. 10.1016/j.inffus.2013.10.011 |
8 | SMETS P. The combination of evidence in the transferable belief model [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(5): 447-458. 10.1109/34.55104 |
9 | LIAN C, RUAN S, DENŒUX T, et al. Joint tumor segmentation in PET-CT images using co-clustering and fusion based on belief functions [J]. IEEE Transactions on Image Processing, 2018, 28(2): 755-766. 10.1109/tip.2018.2872908 |
10 | VÁZQUEZ-REINA A, GELBART M, HUANG D, et al. Segmentation fusion for connectomics [C]// Proceedings of the 2011 International Conference on Computer Vision. Piscataway: IEEE, 2011: 177-184. 10.1109/iccv.2011.6126240 |
11 | 肖儿良,周莹,简献忠.迁移学习与GAN结合的医学图像融合模型[J].小型微型计算机系统,2020,41(9):1972-1978. 10.3969/j.issn.1000-1220.2020.09.029 |
XIAO E L, ZHOU Y, JIAN X Z. Medical image fusion model combining transfer learning and generative adversarial network [J]. Journal of Chinese Computer Systems,2020,41(9):1972-1978. 10.3969/j.issn.1000-1220.2020.09.029 | |
12 | 李鸿,邹俊颖,谭茜成,等.面向医学图像分割的多注意力融合网络[J].计算机应用,2022,42(12):3891-3899. 10.11772/j.issn.1001-9081.2021101737 |
LI H, ZOU J Y, TAN X C, et al. Multi-attention fusion network for medical image segmentation [J]. Journal of Computer Applications, 2022, 42(12): 3891-3899. 10.11772/j.issn.1001-9081.2021101737 | |
13 | ZHANG N, RUAN S, LEBONVALLET S, et al. Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation [J]. Computer Vision and Image Understanding, 2011, 115(2): 256-269. 10.1016/j.cviu.2010.09.007 |
14 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017, 60(6): 84-90. 10.1145/3065386 |
15 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. [2023-04-24]. . |
16 | SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 1-9. 10.1109/cvpr.2015.7298594 |
17 | HE K, ZHANG X, REN S, et al. Identity mappings in deep residual networks [C]// Proceedings of the 2016 European Conference on Computer Vision, LNIP 9908. Cham:Springer, 2016: 630-645. |
18 | HUANG G, LIU Z, L van der MAATEN, et al. Densely connected convolutional networks [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2017: 2261-2269. 10.1109/cvpr.2017.243 |
19 | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 3431-3440. 10.1109/cvpr.2015.7298965 |
20 | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation [C]// Proceedings of 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. |
21 | MENZE B H, JAKAB A, BAUER S, et al. The multimodal brain tumor image segmentation benchmark (BRATS) [J]. IEEE Transactions on Medical Imaging, 2015, 34(10): 1993-2024. 10.1109/tmi.2014.2377694 |
22 | PEREIRA S, PINTO A, ALVES V, et al. Brain tumor segmentation using convolutional neural networks in MRI images [J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1240-1251. 10.1109/tmi.2016.2538465 |
23 | HAVAEI M, DAVY A, WARDE-FARLEY D, et al. Brain tumor segmentation with deep neural networks [J]. Medical Image Analysis, 2017, 35: 18-31. 10.1016/j.media.2016.05.004 |
24 | KALINOVSKY A, KOVALEV V. Lung image segmentation using deep learning methods and convolutional neural networks [C]// Proceedings of the 13th International Conference on Pattern Recognition and Information Processing. Berlin: Springer, 2016: 21-24. |
25 | ROTH H R, LU L, FARAG A, et al. DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation [C]// Proceedings of 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, LNIP 9349. Cham: Springer, 2015: 556-564. |
26 | FU M, WU W, HONG X, et al. Hierarchical combinatorial deep learning architecture for pancreas segmentation of medical computed tomography cancer images [J]. BMC Systems Biology, 2018, 12: No.56. 10.1186/s12918-018-0572-z |
27 | YU L, YANG X, CHEN H, et al. Volumetric ConvNets with mixed residual connections for automated prostate segmentation from 3D MR images [C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2017: 66-72. 10.1609/aaai.v31i1.10510 |
28 | ZHOU X, TAKAYAMA R, WANG S, et al. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method [J]. Medical Physics, 2017, 44(10): 5221-5233. 10.1002/mp.12480 |
29 | STOYANOV D, TAYLOR Z, CARNEIRO G, et al. Deep learning in medical image analysis and multimodal learning for clinical decision support [C]// Proceedings of the 4th International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, LNCS 11045. Cham: Springer, 2018: 3-11. |
30 | ZHOU T, RUAN S, CANU S. A review: deep learning for medical image segmentation using multi-modality fusion [J]. Array, 2019, (3/4): No.100004. 10.1016/j.array.2019.100004 |
31 | HATAMIZADEH A, NATH V, TANG Y, et al. Swin UNETR: Swin transformers for semantic segmentation of brain tumors in MRI images [C]// Proceedings of the 7th International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, BrainLes 2021, Held in Conjunction with MICCAI 2021, LNCS 12962. Cham: Springer, 2022: 272-284. 10.1007/978-3-031-08999-2_22 |
32 | MENDRIK A M, VINCKEN K L, KUIJF H J, et al. MRBrainS challenge: online evaluation framework for brain image segmentation in 3T MRI scans [J]. Computational Intelligence and Neuroscience, 2015, 2015: No.813696. 10.1155/2015/813696 |
33 | IŠGUM I, BENDERS M J N L, AVANTS B, et al. Evaluation of automatic neonatal brain segmentation algorithms: the NeoBrainS12 challenge [J]. Medical Image Analysis, 2015, 20(1): 135-151. 10.1016/j.media.2014.11.001 |
34 | WANG L, NIE D, LI G, et al. Benchmark on automatic six-month-old infant brain segmentation algorithms: the iSeg-2017 challenge [J]. IEEE Transactions on Medical Imaging, 2019, 38(9): 2219-2230. 10.1109/tmi.2019.2901712 |
35 | DOLZ J, GOPINATH K, YUAN J, et al. HyperDense-Net: a hyper-densely connected CNN for multi-modal image segmentation [J]. IEEE Transactions on Medical Imaging, 2019, 38(5): 1116-1126. 10.1109/tmi.2018.2878669 |
36 | CUI S, MAO L, JIANG J, et al. Automatic semantic segmentation of brain gliomas from MRI images using a deep cascaded neural network [J]. Journal of Healthcare Engineering, 2018, 2018: No.4940593. 10.1155/2018/4940593 |
37 | DOLZ J, DESROSIERS C, AYED I BEN. IVD-Net: intervertebral disc localization and segmentation in MRI with a multi-modal UNet [C]// Proceedings of 5th International Workshop and Challenge, CSI 2018, Held in Conjunction with MICCAI 2018, LNCS 11397. Cham: Springer, 2019: 130-143. 10.1007/978-3-030-13736-6_11 |
38 | NIE D, WANG L, GAO Y, et al. Fully convolutional networks for multi-modality isointense infant brain image segmentation[C]// Proceedings of 2016 IEEE International Symposium on Biomedical Imaging. Piscataway: IEEE, 2016: 1342-1345. 10.1109/isbi.2016.7493515 |
39 | WANG G, LI W, OURSELIN S, et al. Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks [C]// Proceedings of the Third International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, BrainLes 2017, Held in Conjunction with MICCAI 2017, LNCS 10670. Cham: Springer, 2018: 178-190. 10.1007/978-3-319-75238-9_16 |
40 | KAMNITSAS K, LEDIG C, NEWCOMBE V F J, et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation [J]. Medical Image Analysis, 2017, 36: 61-78. 10.1016/j.media.2016.10.004 |
41 | ZHAO X, WU Y, SONG G, et al. A deep learning model integrating FCNNs and CRFs for brain tumor segmentation [J]. Medical Image Analysis, 2018, 43: 98-111. 10.1016/j.media.2017.10.002 |
42 | MLYNARSKI P, DELINGETTE H, CRIMINISI A, et al. 3D convolutional neural networks for tumor segmentation using long-range 2D context [J]. Computerized Medical Imaging and Graphics, 2019, 73: 60-72. 10.1016/j.compmedimag.2019.02.001 |
43 | WANG J, PEREZ L. The effectiveness of data augmentation in image classification using deep learning [EB/OL]. [2022-05-09]. . |
44 | ISENSEE F, KICKINGEREDER P, WICK W, et al. Brain tumor segmentation and radiomics survival prediction: Contribution to the BraTS 2017 challenge [C]// Proceedings of the Third International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, BrainLes 2017, Held in Conjunction with MICCAI 2017, LNCS 10670. Cham: Springer, 2018: 287-297. 10.1007/978-3-319-75238-9_25 |
45 | ISENSEE F, KICKINGEREDER P, WICK W, et al. No new-net [C]// Proceedings of the 4th International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, BrainLes 2018, Held in Conjunction with MICCAI 2018, LNCS 11384. Cham: Springer, 2019: 234-244. 10.1007/978-3-030-11726-9_21 |
46 | MYRONENKO A. 3D MRI brain tumor segmentation using autoencoder regularization [C]// Proceedings of the 4th International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, BrainLes 2018, Held in Conjunction with MICCAI 2018, LNCS 11384. Cham: Springer, 2019: 311-320. 10.1007/978-3-030-11726-9_28 |
47 | ZHOU C, DING C, WANG X, et al. One-pass multi-task networks with cross-task guided attention for brain tumor segmentation [J]. IEEE Transactions on Image Processing, 2020, 29: 4516-4529. 10.1109/tip.2020.2973510 |
48 | ZHAO C, ZHAO Z, ZENG Q, et al. MVP U-Net: multi-view pointwise U-net for brain tumor segmentation [C]// Proceedings of the 6th International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, BrainLes 2020, Held in Conjunction with MICCAI 2020, LNCS 12659. Cham: Springer, 2021: 93-103. 10.1007/978-3-030-72087-2_9 |
49 | DING Y, ZHENG W, GENG J, et al. MVFusFra: a multi-view dynamic fusion framework for multimodal brain tumor segmentation [J]. IEEE Journal of Biomedical and Health Informatics, 2021, 26(4): 1570-1581. 10.1109/jbhi.2021.3122328 |
50 | QIN Y, KAMNITSAS K, ANCHA S, et al. Autofocus layer for semantic segmentation [C]// Proceedings of 21th International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 11072. Cham: Springer, 2018: 603-611. |
51 | LIN F, WU Q, LIU J, et al. Path aggregation U-Net model for brain tumor segmentation [J]. Multimedia Tools and Applications, 2021, 80(15): 22951-22964. 10.1007/s11042-020-08795-9 |
52 | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks [J]. Communications of the ACM, 2020, 63(11): 139-144. 10.1145/3422622 |
53 | YANG H-Y, YANG J. Automatic brain tumor segmentation with contour aware residual network and adversarial training[C]// Proceedings of the 4th International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, BrainLes 2018, Held in Conjunction with MICCAI 2018, LNCS 11384. Cham: Springer, 2019: 267-278. 10.1007/978-3-030-11726-9_24 |
54 | HUO Y, XU Z, BAO S, et al. Splenomegaly segmentation on multi-modal MRI using deep convolutional networks [J]. IEEE Transactions on Medical Imaging, 2019, 38(5): 1185-1196. 10.1109/tmi.2018.2881110 |
55 | ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2017: 5967-5976. 10.1109/cvpr.2017.632 |
56 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 6000-6010. |
57 | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale [EB/OL]. [2023-04-24]. . |
58 | LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 10012-10022. 10.1109/iccv48922.2021.00986 |
59 | JIA Q, SHU H. BiTr-Unet: a CNN-Transformer combined network for MRI brain tumor segmentation [C]// Proceedings of the 7th International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, BrainLes 2021, Held in Conjunction with MICCAI 2021, LNCS 12963. Cham: Springer, 2022: 3-14. 10.1007/978-3-031-09002-8_1 |
60 | CHEN J, LU Y, YU Q, et al. TransUnet: Transformers make strong encoders for medical image segmentation [EB/OL]. [2023-04-25]. . 10.48550/arXiv.2102.04306 |
61 | WANG W, CHEN C, DING M, et al. TransBTS: multimodal brain tumor segmentation using transformer [C]// Proceedings of the 24th International Conference on Medical Image Computing and Computer Assisted Intervention, LNIP 12901. Cham: Springer, 2021: 109-119. |
62 | HATAMIZADEH A, NATH V, TANG Y, et al. Swin UNETR: Swin Transformers for semantic segmentation of brain tumors in MRI images [C]// Proceedings of the 7th International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, BrainLes 2021, Held in Conjunction with MICCAI 2021, LNCS 12962. Cham: Springer, 2022: 272-284. 10.1007/978-3-031-08999-2_22 |
63 | JIANG Y, ZHANG Y, LIN X, et al. SwinBTS: a method for 3D multimodal brain tumor segmentation using Swin Transformer [J]. Brain Sciences, 2022, 12(6): No.797. 10.3390/brainsci12060797 |
64 | CHEN L, WU Y, DSOUZA A M, et al. MRI tumor segmentation with densely connected 3D CNN [C]// Proceedings of the 2018 Medical Imaging: Image Processing, SPIE 10574. Bellingham, WA: SPIE, 2018: 357-364. |
65 | CHEN Y, CHEN J, WEI D, et al. OctopusNet: a deep learning segmentation network for multi-modal medical images [C]// Proceedings of the First International Workshop on Multiscale Multimodal Medical Imaging, LNCS 11977. Cham: Springer, 2020: 17-25. |
66 | YUE M, DAI Z, HE J, et al. MRI-guided automated delineation of gross tumor volume for nasopharyngeal carcinoma using deep learning[C]// Proceedings of the 35th IEEE International Symposium on Computer-Based Medical Systems. Piscataway: IEEE, 2022: 292-296. 10.1109/cbms55023.2022.00058 |
67 | LI C, SUN H, LIU Z, et al. Learning cross-modal deep representations for multi-modal MR image segmentation [C]// Proceedings of the 22nd International Conference on Medical Image Computing and Computer Assisted Intervention, LNCS 11765. Cham: Springer, 2019: 57-65. |
68 | ZHANG Y, YANG J, TIAN J, et al. Modality-aware mutual learning for multi-modal medical image segmentation [C]// Proceedings of the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 12901. Cham: Springer, 2021: 589-599. |
69 | DOU Q, LIU Q, HENG P A, et al. Unpaired multi-modal segmentation via knowledge distillation [J]. IEEE Transactions on Medical Imaging, 2020, 39(7): 2415-2425. 10.1109/tmi.2019.2963882 |
70 | WANG H, ZHANG J, CHEN Y, et al. Uncertainty-aware multi-modal learning via cross-modal random network prediction[C]// Proceedings of the 17th European Conference on Computer Vision, LNCS 13697. Cham: Springer, 2022: 200-217. |
71 | ROKACH L. Ensemble-based classifiers [J]. Artificial Intelligence Review, 2010, 33(1/2): 1-39. 10.1007/s10462-009-9124-7 |
72 | KAMNITSAS K, BAI W, FERRANTE E, et al. Ensembles of multiple models and architectures for robust brain tumour segmentation [C]// Proceedings of the Third International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, BrainLes 2017, Held in Conjunction with MICCAI 2017, LNCS 10670. Berlin: Springer, 2018: 450-462. 10.1007/978-3-319-75238-9_38 |
73 | AYGÜN M, ŞAHIN Y H, Ünal G. Multi modal convolutional neural networks for brain tumor segmentation [EB/OL]. [2023-04-24]. . |
74 | DOUZAS G, BACAO F. Effective data generation for imbalanced learning using conditional generative adversarial networks [J]. Expert Systems with Applications, 2018, 91(C): 464-471. 10.1016/j.eswa.2017.09.030 |
75 | CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique [J]. Journal of Artificial Intelligence Research, 2002, 16(1): 321-357. 10.1613/jair.953 |
76 | CLÈRIGUES A, VALVERDE S, BERNAL J, et al. Acute and sub-acute stroke lesion segmentation from multimodal MRI [J]. Computer Methods and Programs in Biomedicine, 2020, 194: No.105521. 10.1016/j.cmpb.2020.105521 |
77 | HE Y, YANG D, ROTH H, et al. DiNTS: differentiable neural network topology search for 3D medical image segmentation [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2021: 5841-5850. 10.1109/cvpr46437.2021.00578 |
78 | CHANG P D. Fully convolutional neural networks with hyperlocal features for brain tumor segmentation [C]// Proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer, 2016: 4-9. |
79 | ZHOU T, RUAN S, VERA P, et al. A tri-attention fusion guided multi-modal segmentation network [J]. Pattern Recognition, 2022, 124(C): No.108417. 10.1016/j.patcog.2021.108417 |
80 | ZHANG D, HUANG G, ZHANG Q, et al. Cross-modality deep feature learning for brain tumor segmentation [J]. Pattern Recognition, 2021, 110: No.107562. 10.1016/j.patcog.2020.107562 |
[1] | Ziyi HE, Yan YANG, Yiling ZHANG. Multi-view clustering network with deep fusion [J]. Journal of Computer Applications, 2023, 43(9): 2651-2656. |
[2] | Juntao CHEN, Ziqi ZHU. Image copy-move forgery detection based on multi-scale feature extraction and fusion [J]. Journal of Computer Applications, 2023, 43(9): 2919-2924. |
[3] | Xiaolin LI, Songjia YANG. Hybrid beamforming for multi-user mmWave relay networks using deep learning [J]. Journal of Computer Applications, 2023, 43(8): 2511-2516. |
[4] | Xiang GUO, Wengang JIANG, Yuhang WANG. Encrypted traffic classification method based on improved Inception-ResNet [J]. Journal of Computer Applications, 2023, 43(8): 2471-2476. |
[5] | Yumeng CUI, Jingya WANG, Xiaowen LIU, Shangyi YAN, Zhizhong TAO. General text classification model combining attention and cropping mechanism [J]. Journal of Computer Applications, 2023, 43(8): 2396-2405. |
[6] | Kun ZHANG, Fengyu YANG, Fa ZHONG, Guangdong ZENG, Shijian ZHOU. Source code vulnerability detection based on hybrid code representation [J]. Journal of Computer Applications, 2023, 43(8): 2517-2526. |
[7] | Yi WANG, Jie XIE, Jia CHENG, Liwei DOU. Review of object pose estimation in RGB images based on deep learning [J]. Journal of Computer Applications, 2023, 43(8): 2546-2555. |
[8] | Yuxin TUO, Tao XUE. Joint triple extraction model combining pointer network and relational embedding [J]. Journal of Computer Applications, 2023, 43(7): 2116-2124. |
[9] | Jiaming HE, Jucheng YANG, Chao WU, Xiaoning YAN, Nenghua XU. Person re-identification method based on multi-modal graph convolutional neural network [J]. Journal of Computer Applications, 2023, 43(7): 2182-2189. |
[10] | Min LIANG, Jiayi LIU, Jie LI. Image super-resolution reconstruction method based on iterative feedback and attention mechanism [J]. Journal of Computer Applications, 2023, 43(7): 2280-2287. |
[11] | Kunpei YE, Xi XIONG, Zhe DING. Recruitment recommendation model based on field fusion and time weight [J]. Journal of Computer Applications, 2023, 43(7): 2133-2139. |
[12] | Libin CEN, Jingdong LI, Chunbo LIN, Xiaoling WANG. Approximate query processing approach based on deep autoregressive model [J]. Journal of Computer Applications, 2023, 43(7): 2034-2039. |
[13] | Shuai ZHENG, Xiaolong ZHANG, He DENG, Hongwei REN. 3D liver image segmentation method based on multi-scale feature fusion and grid attention mechanism [J]. Journal of Computer Applications, 2023, 43(7): 2303-2310. |
[14] | Runting DONG, Li WU, Xiaoying WANG, Tengfei CAO, Jianqiang HUANG, Qin GUAN, Jiexia WU. Review of application analysis and research progress of deep learning in weather forecasting [J]. Journal of Computer Applications, 2023, 43(6): 1958-1968. |
[15] | Yichi CHEN, Bin CHEN. Review of lifelong learning in computer vision [J]. Journal of Computer Applications, 2023, 43(6): 1785-1795. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||