Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (7): 2166-2172.DOI: 10.11772/j.issn.1001-9081.2022060933
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
					
						                                                                                                                                                                                                                    Chunlan ZHAN1, Anzhi WANG1( ), Minghui WANG2
), Minghui WANG2
												  
						
						
						
					
				
Received:2022-06-28
															
							
																	Revised:2022-08-30
															
							
																	Accepted:2022-09-01
															
							
							
																	Online:2022-09-13
															
							
																	Published:2023-07-10
															
							
						Contact:
								Anzhi WANG   
													About author:ZHAN Chunlan, born in 2000. Her research interests include camouflage object detection.Supported by:通讯作者:
					王安志
							作者简介:詹春兰(2000—),女,贵州毕节人,CCF会员,主要研究方向:伪装目标检测;基金资助:CLC Number:
Chunlan ZHAN, Anzhi WANG, Minghui WANG. Camouflage object segmentation method based on channel attention and edge fusion[J]. Journal of Computer Applications, 2023, 43(7): 2166-2172.
詹春兰, 王安志, 王明辉. 基于通道注意力和边缘融合的伪装目标分割方法[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2166-2172.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022060933
| 方法 | 期刊/年份 | CHAMELEON | COD10K | ||||||
|---|---|---|---|---|---|---|---|---|---|
| NLDF | CVPR/17 | 0.798 | 0.714 | 0.809 | 0.063 | 0.701 | 0.539 | 0.709 | 0.059 | 
| PiCANet | CVPR/18 | 0.765 | 0.618 | 0.779 | 0.085 | 0.696 | 0.489 | 0.712 | 0.081 | 
| EGNet | ICCV/19 | 0.856 | 0.766 | 0.883 | 0.049 | 0.751 | 0.595 | 0.793 | 0.053 | 
| CPD | CVPR/19 | 0.857 | 0.771 | 0.857 | 0.048 | 0.750 | 0.595 | 0.776 | 0.053 | 
| F3Net | AAAI/20 | 0.848 | 0.770 | 0.894 | 0.047 | 0.739 | 0.593 | 0.795 | 0.051 | 
| SINet | CVPR/20 | 0.872 | 0.776 | 0.679 | |||||
| TINet | AAAI/21 | 0.783 | 0.916 | 0.038 | 0.635 | 0.848 | |||
| C2FNet | IJCAI/21 | 0.854 | 0.785 | 0.906 | 0.045 | 0.788 | 0.862 | 0.045 | |
| 本文方法 | — | 0.898 | 0.854 | 0.939 | 0.027 | 0.802 | 0.710 | 0.868 | 0.038 | 
Tab. 1 Quantitative index comparison of the proposed method and mainstream methods
| 方法 | 期刊/年份 | CHAMELEON | COD10K | ||||||
|---|---|---|---|---|---|---|---|---|---|
| NLDF | CVPR/17 | 0.798 | 0.714 | 0.809 | 0.063 | 0.701 | 0.539 | 0.709 | 0.059 | 
| PiCANet | CVPR/18 | 0.765 | 0.618 | 0.779 | 0.085 | 0.696 | 0.489 | 0.712 | 0.081 | 
| EGNet | ICCV/19 | 0.856 | 0.766 | 0.883 | 0.049 | 0.751 | 0.595 | 0.793 | 0.053 | 
| CPD | CVPR/19 | 0.857 | 0.771 | 0.857 | 0.048 | 0.750 | 0.595 | 0.776 | 0.053 | 
| F3Net | AAAI/20 | 0.848 | 0.770 | 0.894 | 0.047 | 0.739 | 0.593 | 0.795 | 0.051 | 
| SINet | CVPR/20 | 0.872 | 0.776 | 0.679 | |||||
| TINet | AAAI/21 | 0.783 | 0.916 | 0.038 | 0.635 | 0.848 | |||
| C2FNet | IJCAI/21 | 0.854 | 0.785 | 0.906 | 0.045 | 0.788 | 0.862 | 0.045 | |
| 本文方法 | — | 0.898 | 0.854 | 0.939 | 0.027 | 0.802 | 0.710 | 0.868 | 0.038 | 
| 方法 | CHAMELEON | COD10K | ||||||
|---|---|---|---|---|---|---|---|---|
| Basic | 0.856 | 0.795 | 0.908 | 0.044 | 0.767 | 0.648 | 0.843 | 0.047 | 
| Basic+SE | 0.872 | 0.822 | 0.920 | 0.038 | 0.791 | 0.690 | 0.858 | 0.044 | 
| Basic+DSCA | 0.876 | 0.826 | 0.917 | 0.035 | 0.788 | 0.698 | 0.856 | 0.040 | 
| Basic+EFCBP | 0.880 | 0.826 | 0.928 | 0.034 | 0.786 | 0.690 | 0.855 | 0.042 | 
| CANet | 0.898 | 0.854 | 0.939 | 0.027 | 0.802 | 0.710 | 0.868 | 0.038 | 
Tab. 2 Ablation experimental results of SE, DSCA and EFCBP modules on CHAMELEON and COD10K datasets
| 方法 | CHAMELEON | COD10K | ||||||
|---|---|---|---|---|---|---|---|---|
| Basic | 0.856 | 0.795 | 0.908 | 0.044 | 0.767 | 0.648 | 0.843 | 0.047 | 
| Basic+SE | 0.872 | 0.822 | 0.920 | 0.038 | 0.791 | 0.690 | 0.858 | 0.044 | 
| Basic+DSCA | 0.876 | 0.826 | 0.917 | 0.035 | 0.788 | 0.698 | 0.856 | 0.040 | 
| Basic+EFCBP | 0.880 | 0.826 | 0.928 | 0.034 | 0.786 | 0.690 | 0.855 | 0.042 | 
| CANet | 0.898 | 0.854 | 0.939 | 0.027 | 0.802 | 0.710 | 0.868 | 0.038 | 
| 1 | SUN Y J, CHEN G, ZHOU T, et al. Context-aware cross-level fusion network for camouflaged object detection [C]// Proceedings of the 30th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2021: 1025-1031. 10.24963/ijcai.2021/142 | 
| 2 | 谭湘粤,胡晓,杨佳信,等.基于递进式特征增强聚合的伪装目标检测[J].计算机应用, 2022, 42(7): 2192-2200. 10.11772/j.issn.1001-9081.2021060900 | 
| TAN X Y, HU X, YANG J X, et al. Camouflaged object detection based on progressive feature enhancement aggregation[J]. Journal of Computer Applications, 2022, 42(7): 2192-2200. 10.11772/j.issn.1001-9081.2021060900 | |
| 3 | 何淋艳,王安志,任春洪,等.伪装目标检测与分割研究进展[J].软件导刊, 2022, 21(3): 237-243. | 
| HE L Y, WANG A Z, REN C H, et al. Research advances in camouflage object detection and segmentation[J]. Software Guide, 2022, 21(3): 237-243. | |
| 4 | MEI H Y, JI G P, WEI Z Q, et al. Camouflaged object segmentation with distraction mining [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 8768-8777. 10.1109/cvpr46437.2021.00866 | 
| 5 | 王安志,任春洪,何淋艳,等.基于多模态多级特征聚合网络的光场显著性目标检测[J].计算机工程, 2022, 48(7): 227-233, 240. | 
| WANG A Z, REN C H, HE L Y, et al. Light field salient object detection based on multi-modal multi-level feature aggregation network[J]. Computer Engineering, 2022, 48(7): 227-233, 240. | |
| 6 | 李小雨,房体育,夏英杰,等.基于图割精细化和可微分聚类的无监督显著性目标检测[J].计算机应用, 2021, 41(12): 3571-3577. 10.11772/j.issn.1001-9081.2021061054 | 
| LI X Y, FANG T Y, XIA Y J, et al. Unsupervised salient object detection based on graph cut refinement and differentiable clustering[J]. Journal of Computer Applications, 2021, 41(12): 3571-3577. 10.11772/j.issn.1001-9081.2021061054 | |
| 7 | WU R M, FENG M Y, GUAN W L, et al. A mutual learning method for salient object detection with intertwined multi-supervision [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 8142-8151. 10.1109/cvpr.2019.00834 | 
| 8 | QIN X B, ZHANG Z C, HUANG C Y, et al. BASNet: boundary-aware salient object detection [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 7471-7481. 10.1109/cvpr.2019.00766 | 
| 9 | FENG M Y, LU H C, DING E R. Attentive feedback network for boundary-aware salient object detection [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1623-1632. 10.1109/cvpr.2019.00172 | 
| 10 | JI G P, ZHU L, ZHUGE M C, et al. Fast camouflaged object detection via edge-based reversible re-calibration network[J]. Pattern Recognition, 2022, 123: No.108414. 10.1016/j.patcog.2021.108414 | 
| 11 | ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6230-6239. 10.1109/cvpr.2017.660 | 
| 12 | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. 10.1109/tpami.2017.2699184 | 
| 13 | RAMACHANDRAN P, PARMAR N, VASWANI A, et al. Stand-alone self-attention in vision models [C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2019: 68-80. | 
| 14 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. 10.1109/cvpr.2018.00745 | 
| 15 | GAO S H, CHENG M M, ZHAO K, et al. Res2Net: a new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 652-662. 10.1109/tpami.2019.2938758 | 
| 16 | LE T N, NGUYEN T V, NIE Z L, et al. Anabranch network for camouflaged object segmentation[J]. Computer Vision and Image Understanding, 2019, 184: 45-56. 10.1016/j.cviu.2019.04.006 | 
| 17 | SKUROWSKI P, ABDULAMEER H, BŁASZCZYK J, et al. Animal camouflage analysis: CHAMELEON database[DB/OL]. [2022-06-20]. . | 
| 18 | FAN D P, JI G P, SUN G L, et al. Camouflaged object detection [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 2774-2784. 10.1109/cvpr42600.2020.00285 | 
| 19 | LV Y Q, ZHANG J, DAI Y C, et al. Simultaneously localize, segment and rank the camouflaged objects [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 11586-11596. 10.1109/cvpr46437.2021.01142 | 
| 20 | FAN D P, CHENG M M, LIU Y, et al. Structure measure: a new way to evaluate foreground maps [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 4558-4567. 10.1109/iccv.2017.487 | 
| 21 | FAN D P, GONG C, CAO Y, et al. Enhanced-alignment measure for binary foreground map evaluation [C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2018: 698-704. 10.24963/ijcai.2018/97 | 
| 22 | LOU Z M, MISHRA A, ACHKAR A, et al. Non-local deep features for salient object detection [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6593-6601. 10.1109/cvpr.2017.698 | 
| 23 | LIU N, HAN J W, YANG M H. PiCANet: learning pixel-wise contextual attention for saliency detection [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3089-3098. 10.1109/cvpr.2018.00326 | 
| 24 | ZHAO J X, LIU J J, FAN D P, et al. EGNet: edge guidance network for salient object detection [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 8778-8787. 10.1109/iccv.2019.00887 | 
| 25 | WU Z, SU L, HUANG Q M. Cascaded partial decoder for fast and accurate salient object detection [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3902-3911. 10.1109/cvpr.2019.00403 | 
| 26 | WEI J, WANG S H, HUANG Q M. F3Net: fusion, feedback and focus for salient object detection [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 12321-12328. 10.1609/aaai.v34i07.6916 | 
| 27 | ZHU J C, ZHANG X Y, ZHANG S, et al. Inferring camouflaged objects by texture-aware interactive guidance network [C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021: 3599-3607. 10.1609/aaai.v35i4.16475 | 
| [1] | Yan RONG, Jiawen LIU, Xinlei LI. Adaptive hybrid network for affective computing in student classroom [J]. Journal of Computer Applications, 2024, 44(9): 2919-2930. | 
| [2] | Tong CHEN, Fengyu YANG, Yu XIONG, Hong YAN, Fuxing QIU. Construction method of voiceprint library based on multi-scale frequency-channel attention fusion [J]. Journal of Computer Applications, 2024, 44(8): 2407-2413. | 
| [3] | Hongtian LI, Xinhao SHI, Weiguo PAN, Cheng XU, Bingxin XU, Jiazheng YUAN. Few-shot object detection via fusing multi-scale and attention mechanism [J]. Journal of Computer Applications, 2024, 44(5): 1437-1444. | 
| [4] | Zhanjun JIANG, Baijing WU, Long MA, Jing LIAN. Faster-RCNN water-floating garbage recognition based on multi-scale feature and polarized self-attention [J]. Journal of Computer Applications, 2024, 44(3): 938-944. | 
| [5] | Hao YANG, Yi ZHANG. Feature pyramid network algorithm based on context information and multi-scale fusion importance awareness [J]. Journal of Computer Applications, 2023, 43(9): 2727-2734. | 
| [6] | Hong WANG, Qing QIAN, Huan WANG, Yong LONG. Lightweight image tamper localization algorithm based on large kernel attention convolution [J]. Journal of Computer Applications, 2023, 43(9): 2692-2699. | 
| [7] | Junjian JIANG, Dawei LIU, Yifan LIU, Yougui REN, Zhibin ZHAO. Few-shot object detection algorithm based on Siamese network [J]. Journal of Computer Applications, 2023, 43(8): 2325-2329. | 
| [8] | Shuai ZHENG, Xiaolong ZHANG, He DENG, Hongwei REN. 3D liver image segmentation method based on multi-scale feature fusion and grid attention mechanism [J]. Journal of Computer Applications, 2023, 43(7): 2303-2310. | 
| [9] | Yiyu GUO, Luoyu ZHOU, Xinyu LIU, Yao LI. Dangerous goods detection method in elevator scene based on improved attention mechanism [J]. Journal of Computer Applications, 2023, 43(7): 2295-2302. | 
| [10] | Ruilin JIANG, Renchao QIN. Multi-neural network malicious code detection model based on depthwise separable convolution [J]. Journal of Computer Applications, 2023, 43(5): 1527-1533. | 
| [11] | Hui LIU, Linyu ZHANG, Fugang WANG, Rujin HE. Object detection algorithm based on attention mechanism and context information [J]. Journal of Computer Applications, 2023, 43(5): 1557-1564. | 
| [12] | Zhouhua ZHU, Qi QI. Automatic detection and recognition of electric vehicle helmet based on improved YOLOv5s [J]. Journal of Computer Applications, 2023, 43(4): 1291-1296. | 
| [13] | You YANG, Ruhui ZHANG, Pengcheng XU, Kang KANG, Hao ZHAI. Improved U-Net for seal segmentation of Republican archives [J]. Journal of Computer Applications, 2023, 43(3): 943-948. | 
| [14] | Xin ZHAO, Qianqian ZHU, Cong ZHAO, Jialing WU. Segmentation of breast nodules in ultrasound images based on multi-scale and cross-spatial fusion [J]. Journal of Computer Applications, 2023, 43(11): 3599-3606. | 
| [15] | LYU Yuchao, JIANG Xi, XU Yinghao, ZHU Xijun. Improved brachial plexus nerve segmentation method based on multi-scale feature fusion [J]. Journal of Computer Applications, 2023, 43(1): 273-279. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||