Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (2): 606-615.DOI: 10.11772/j.issn.1001-9081.2021040586
• Frontier and comprehensive applications • Previous Articles Next Articles
Sheng CHEN1, Jun ZHOU1,2(), Xiaobing HU2,3, Ji MA1,2
Received:
2021-04-15
Revised:
2021-06-15
Accepted:
2021-06-17
Online:
2022-02-11
Published:
2022-02-10
Contact:
Jun ZHOU
About author:
CHEN Sheng, born in 1996, M. S. candidate. His research interests include path planning, heuristic algorithm.Supported by:
通讯作者:
周隽
作者简介:
陈昇(1996—),男,福建莆田人,硕士研究生,主要研究方向:路径规划、启发式算法;基金资助:
CLC Number:
Sheng CHEN, Jun ZHOU, Xiaobing HU, Ji MA. Optimization of airport arrival procedures based on hybrid simulated annealing algorithm[J]. Journal of Computer Applications, 2022, 42(2): 606-615.
陈昇, 周隽, 胡小兵, 马霁. 基于混合模拟退火算法的机场进场程序优化[J]. 《计算机应用》唯一官方网站, 2022, 42(2): 606-615.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021040586
参数 | 值 |
---|---|
初始温度 | 100 |
终止温度 | 0.1 |
温度衰减系数 | 0.95 |
每个温度迭代次数K | 100 |
汇聚决策检测概率 | 0.5 |
Tab. 1 Related parameters of simulated annealing algorithm
参数 | 值 |
---|---|
初始温度 | 100 |
终止温度 | 0.1 |
温度衰减系数 | 0.95 |
每个温度迭代次数K | 100 |
汇聚决策检测概率 | 0.5 |
参数 | 值 |
---|---|
最小水平安全距离 | 3 n mile |
最小竖直安全距离 | 1 000 ft |
最大航向角改变量 | 45° |
弧弦比阈值 | 1.5 |
航向角改变量的绝对值之和阈值 | 180 |
Tab. 2 Other user-defined parameters
参数 | 值 |
---|---|
最小水平安全距离 | 3 n mile |
最小竖直安全距离 | 1 000 ft |
最大航向角改变量 | 45° |
弧弦比阈值 | 1.5 |
航向角改变量的绝对值之和阈值 | 180 |
指标 | 目标函数值/n mile | 仿真时间/s |
---|---|---|
最小值 | 277.02 | 127.24 |
最大值 | 278.94 | 177.89 |
平均值 | 277.37 | 155.29 |
标准差 | 0.57 | 14.35 |
Tab. 3 Result statistics of 10 simulations of example 1
指标 | 目标函数值/n mile | 仿真时间/s |
---|---|---|
最小值 | 277.02 | 127.24 |
最大值 | 278.94 | 177.89 |
平均值 | 277.37 | 155.29 |
标准差 | 0.57 | 14.35 |
指标 | 目标函数值/n mile | 仿真时间/s |
---|---|---|
最小值 | 280.26 | 1 185.13 |
最大值 | 283.85 | 1 422.32 |
平均值 | 281.11 | 1 291.34 |
标准差 | 1.33 | 88.30 |
Tab. 4 Result statistics of 10 simulations of example 2
指标 | 目标函数值/n mile | 仿真时间/s |
---|---|---|
最小值 | 280.26 | 1 185.13 |
最大值 | 283.85 | 1 422.32 |
平均值 | 281.11 | 1 291.34 |
标准差 | 1.33 | 88.30 |
指标 | 目标函数值/n mile | 仿真时间/s |
---|---|---|
最小值 | 392.35 | 1 761.25 |
最大值 | 403.82 | 2 035.36 |
平均值 | 396.08 | 1 898.32 |
标准差 | 3.55 | 78.70 |
Tab. 5 Result statistics of 10 simulations of Shanghai Pudong Airport
指标 | 目标函数值/n mile | 仿真时间/s |
---|---|---|
最小值 | 392.35 | 1 761.25 |
最大值 | 403.82 | 2 035.36 |
平均值 | 396.08 | 1 898.32 |
标准差 | 3.55 | 78.70 |
1 | United States Standard for Performance Based Navigation (PBN) instrument procedure design: 8260.58B[S]. Washington, DC: Federal Aviation Administration, 2020: 4-1-. 10.1016/j.echo.2005.10.005 |
4-19. 10.1016/j.echo.2005.10.005 | |
2 | 刘崇军,王岁文.飞行程序设计转弯区外边界画法比较[J].航空计算技术, 2015, 45(6): 113-116. 10.3969/j.issn.1671-654X.2015.06.028 |
LIU C J, WANG S W. Drawing method of turn outer boundary[J]. Aeronautical Computing Technique, 2015, 45(6): 113-116. 10.3969/j.issn.1671-654X.2015.06.028 | |
3 | 陈忠会.传统飞行程序辅助设计算法研究[D].天津:中国民航大学, 2017: 50-56. 10.5176/2301-394x_ace17.47 |
CHEN Z H. Research on aided design algorithm of traditional flight procedure[D]. Tianjin: Civil Aviation University of China, 2017: 50-56. 10.5176/2301-394x_ace17.47 | |
4 | MAC T T, COPOT C, TRAN D T, et al. Heuristic approaches in robot path planning: a survey[J]. Robotics and Autonomous Systems, 2016, 86: 13-28. 10.1016/j.robot.2016.08.001 |
5 | 杨俊成,李淑霞,蔡增玉.路径规划算法的研究与发展[J].控制工程, 2017, 24(7): 1473-1480. 10.14107/j.cnki.kzgc.160032 |
YANG J C, LI S X, CAI Z Y. Research and development of path planning algorithm[J]. Control Engineering of China, 2017, 24(7): 1473-1480. 10.14107/j.cnki.kzgc.160032 | |
6 | PIERRE S, DELAHAYE D, CAFIERI S. Aircraft trajectory planning with dynamical obstacles by artificial evolution and convex hull generations[M]// Electronic Navigation Research Institute. Air Traffic Management and Systems II: Selected Papers of the 4th ENRI International Workshop, 2015, LNEE 420. Tokyo: Springer, 2017: 49-67. |
7 | 柏硌,赵刚要.基于MapReduce与蚁群优化的航路规划算法[J].计算机工程, 2015, 41(5): 38-44, 55. 10.3969/j.issn.1000-3428.2015.05.007 |
BO L, ZHAO G Y. Route planning algorithm based on MapReduce and ant colony optimization[J]. Computer Engineering, 2015, 41(5): 38-44, 55. 10.3969/j.issn.1000-3428.2015.05.007 | |
8 | 李楠,张建华.基于改进遗传算法的无人机航路规划[J].计算机仿真, 2016, 33(4): 91-94, 170. 10.3969/j.issn.1006-9348.2016.04.021 |
LI N, ZHANG J H. Path planning for unmanned aerial vehicles based on improved genetic algorithm[J]. Computer Simulation, 2016, 33(4): 91-94, 170. 10.3969/j.issn.1006-9348.2016.04.021 | |
9 | 冯国强,赵晓林,高关根,等.基于A*蚁群算法的无人机航路规划[J].飞行力学, 2018, 36(5): 49-52, 57. 10.13645/j.cnki.f.d.20180614.001 |
FENG G Q, ZHAO X L, GAO G G, et al. Path planning of UAVs using A* ant colony algorithm[J]. Flight Dynamics, 2018, 36(5): 49-52, 57. 10.13645/j.cnki.f.d.20180614.001 | |
10 | 李楠,刘朋,邓人博,等.基于改进遗传算法的无人机三维航路规划[J].计算机仿真, 2017, 34(12): 22-25, 35. 10.3969/j.issn.1006-9348.2017.12.006 |
LI N, LIU P, DENG R B, et al. Three dimensional path planning for unmanned aerial vehicles based on improved genetic algorithm[J]. Computer Simulation, 2017, 34(12): 22-25, 35. 10.3969/j.issn.1006-9348.2017.12.006 | |
11 | ZHOU J, CAFIERI S, DELAHAYE D, et al. Optimizing the design of a route in terminal maneuvering area using branch and bound[M]// Electronic Navigation Research Institute: Selected Papers of the 4th ENRI International Workshop, 2015, LNEE 420. Tokyo: Springer, 2017: 171-184. |
12 | 黄书召,田军委,乔路,等.基于改进遗传算法的无人机路径规划[J].计算机应用, 2021, 41(2): 390-397. |
HUANG S Z, TIAN J W, QIAO L, et al. Unmanned aerial vehicle path planning based on improved genetic algorithm[J]. Journal of Computer Applications, 2021, 41(2): 390-397. | |
13 | PFEIL D M. Optimization of airport terminal-area air traffic operations under uncertain weather conditions[D]. Cambridge: Massachusetts Institute of Technology, 2011: 115-137. |
14 | ZHOU J, CAFIERI S, DELAHAYE D, et al. Optimization-based design of departure and arrival routes in terminal maneuvering area[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(11): 2889-2904. 10.2514/1.g002728 |
15 | 晁绵博,赵向领,李鹏程,等.终端区点融合进近程序设计方法研究[J].航空计算技术, 2016, 46(2): 10-14, 18. 10.3969/j.issn.1671-654X.2016.02.003 |
CHAO M B, ZHAO X L, LI P C, et al. Research on point merge approach procedure design in terminal area[J]. Aeronautical Computing Technique, 2016, 46(2): 10-14, 18. 10.3969/j.issn.1671-654X.2016.02.003 | |
16 | 赵向领,雷碧玉.点汇聚进近飞行程序近地风险评估方法研究[J].中国安全科学学报, 2017, 27(3): 157-162. |
ZHAO X L, LEI B Y. Research on method for assessing risk in ground approach under point merging procedure[J]. China Safety Science Journal, 2017, 27(3): 157-162. | |
17 | 王超,郑旭芳,王蕾.交汇航路空中交通流的非线性特征研究[J].西南交通大学学报, 2017, 52(1): 171-178. 10.3969/j.issn.0258-2724.2017.01.024 |
WANG C, ZHENG X F, WANG L. Research on nonlinear characteristics of air traffic flows on converging air routes[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 171-178. 10.3969/j.issn.0258-2724.2017.01.024 | |
18 | CHOI S, MULFINGER D G, ROBINSON J E, III, et al. Design of an optimal route structure using heuristics-based stochastic schedulers[J]. Journal of Aircraft, 2015, 52(3): 764-777. 10.2514/1.c032645 |
19 | GRANBERG T A, POLISHCHUK T, POLISHCHUK V, et al. Automatic design of aircraft arrival routes with limited turning angle [C]// Proceedings of the 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems. Wadern: Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2016: No.9. |
20 | CHEVALIER J, DELAHAYE D, SBIHI M, et al. Departure and arrival routes optimization near large airports[J]. Aerospace, 2019, 6(7): No.80. 10.3390/aerospace6070080 |
[1] | Runze TIAN, Yulong ZHOU, Hong ZHU, Gang XUE. Local information based path selection algorithm for service migration [J]. Journal of Computer Applications, 2024, 44(7): 2168-2174. |
[2] | Tian MA, Runtao XI, Jiahao LYU, Yijie ZENG, Jiayi YANG, Jiehui ZHANG. Mobile robot 3D space path planning method based on deep reinforcement learning [J]. Journal of Computer Applications, 2024, 44(7): 2055-2064. |
[3] | Jianqiang LI, Zhou HE. Hybrid NSGA-Ⅱ for vehicle routing problem with multi-trip pickup and delivery [J]. Journal of Computer Applications, 2024, 44(4): 1187-1194. |
[4] | Haixin HUANG, Guangwei YU, Shoushan CHENG, Chunming LI. Full coverage path planning of bridge inspection wall-climbing robot based on improved grey wolf optimization [J]. Journal of Computer Applications, 2024, 44(3): 966-971. |
[5] | Ziyang SONG, Junhuai LI, Huaijun WANG, Xin SU, Lei YU. Path planning algorithm of manipulator based on path imitation and SAC reinforcement learning [J]. Journal of Computer Applications, 2024, 44(2): 439-444. |
[6] | Jian SUN, Baoquan MA, Zhuiwei WU, Xiaohuan YANG, Tao WU, Pan CHEN. Joint optimization of UAV swarm path planning and task allocation balance in earthquake scenarios [J]. Journal of Computer Applications, 2024, 44(10): 3232-3239. |
[7] | Yongdi LI, Caihong LI, Yaoyu ZHANG, Guosheng ZHANG. Mobile robot path planning based on improved SAC algorithm [J]. Journal of Computer Applications, 2023, 43(2): 654-660. |
[8] | Lin HUANG, Qiang FU, Nan TONG. Solving robot path planning problem by adaptively adjusted Harris hawk optimization algorithm [J]. Journal of Computer Applications, 2023, 43(12): 3840-3847. |
[9] | Chen LIU, Yang CHEN, Hao FU. UAV path planning for persistent monitoring based on value function iteration [J]. Journal of Computer Applications, 2023, 43(10): 3290-3296. |
[10] | Houming FAN, Shuang MU, Lijun YUE. Collaborative optimization of automated guided vehicle scheduling and path planning considering conflict and congestion [J]. Journal of Computer Applications, 2022, 42(7): 2281-2291. |
[11] | Zhi LI, Jianbin XUE. Task offloading and resource allocation based on simulated annealing algorithm in C-V2X internet of vehicles [J]. Journal of Computer Applications, 2022, 42(10): 3140-3147. |
[12] | LI Kairong, LIU Shuang, HU Qianqian, TANG Yiyuan. Improved ant colony optimization algorithm for path planning based on turning angle constraint [J]. Journal of Computer Applications, 2021, 41(9): 2560-2568. |
[13] | TANG Andi, HAN Tong, XU Dengwu, XIE Lei. Path planning method of unmanned aerial vehicle based on chaos sparrow search algorithm [J]. Journal of Computer Applications, 2021, 41(7): 2128-2136. |
[14] | ZHANG Kang, CHEN Jianping. Path planning algorithm in complex environment using self-adjusting sampling space [J]. Journal of Computer Applications, 2021, 41(4): 1207-1213. |
[15] | WEI Bo, YANG Rong, SHU Sihao, WAN Yong, MIAO Jianguo. Path planning of mobile robots based on ion motion-artificial bee colony algorithm [J]. Journal of Computer Applications, 2021, 41(2): 379-383. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||